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ABSTRACT 

Modeling Software Artifact Count Attribute with S-Curves. 

(December 2007) 

Norman K. Ma, B.S., University of Illinois at Urbana-Champaign; 

M.S., University of Tennessee at Knoxville; 

M.B.A., Southern Methodist University  

Co-Chairs of Advisory Committee: Dr. Dick B. Simmons 
                                                           Dr. William M. Lively 

 

The estimation of software project attributes, such as size, is important for software 

project resource planning and process control. However, research regarding software 

attribute modeling, such as size, effort, and cost, are high-level and static in nature. This 

research defines a new operation-level software project attribute that describes the 

operational characteristic of a software project. The result is a measurement based on the 

s-curve parameter that can be used as a control variable for software project 

management. This result is derived from modeling the count of artifact instances created 

by the software engineering process, which are stored by software tools. Because of the 

orthogonal origin of this attribute in regard to traditional static estimators, this s-curve 

based software attribute can function as an additional indicator of software project 

activities and also as a quantitative metric for assessing development team capability.     
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CHAPTER I 

 

INTRODUCTION 

Estimation of software project attributes (such as size) is important for project resource 

planning and process control. However, size, effort, and cost, do not show the dynamic 

nature of the software engineering process. While concepts like ‘software project’ are 

generally understood, they are not often understood in detail. Object Management 

Group’s Four-layer Metamodel Hierarchy [36] utilizes a framework in order to account 

for various elements of a software project before proceeding to count artifact instances. 

In addition, Appendix A contains a glossary of terminology that can provide grounding 

for ambiguous terms . The Four-layer Metamodel Hierarchy is graphically displayed in 

Figure 1 below: 

 

Fig. 1. Example of OMG’s four-layer metamodel hierarchy [36] 

                                                 
  This dissertation follows the style of IEEE Transactions on Systems, Man, and Cybernetics.  
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Each layer of the hierarchy defines a language that can be instantiated at the lower layer. 

The most well known layers are M2 and M1, where the M2 layer defines the Unified 

Modeling Language (UML) ; at layer M1, users use UML to create a particular system 

called a user model. In other words, the user’s model is an instantiation of UML. Finally, 

when the user model is running, instances of the elements of user model come into 

existence at layer M0. It is the counting of instances at layer M0 of the PAMPA software 

project user model that is the focus of this dissertation.   

The UML is a de facto graphic-based modeling language for describing the 

logical, process, physical, development views of a system [35]. The PAMPA knowledge 

base model describes the various parts of a software project and is constructed using the 

UML at layer M1. During a software project, instances of PAMPA elements are 

instantiated at layer M0. From here, a ‘class attribute’ describes a characteristic of a 

class, and an ‘instance attribute’ describes a characteristic of an instance. Of those 

described, the model collects attributes that are measurable or countable, the definitions 

of which are described in Figure 2: 

 

 

Fig. 2. Two instances of the project class 
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The figure contains the ‘software project’ class represented by a rectangle and 

two instances of the software project class, whereas the dotted rectangle contains the 

attributes of the corresponding object. For the software project class, the value of the 

‘type’ attribute is ‘class’, the value of the ‘name’ attribute is ‘software project’, and the 

‘count’ attribute is set at a value of 2, indicating that two instances of the software 

project class exist; the latter represented as circles, located just below the class. Each 

instance has multiple, corresponding attributes, such as type, class, name, size, etc. For 

instance, the object with the name ‘e-commerce’ has a ‘size’ attribute that contains the 

number 372; furthermore, this size attribute is also measured, in units of  ‘files’. The 

second instance has its own set of attribute-value pairs and are listed as follows: (type - 

‘instance’), (class - ‘software project’), (name - ‘flight control’), (size - 300,000 lines of 

code). We note that the ‘flight control’ instance’s size attribute is measured in units of 

‘lines of code’, with a quantity of 300,000. Moreover, the software project class has a 

class attribute named ‘count’. That attribute has a value of 2 and is measured in the unit 

of ‘software project instance’. The next section describes artifact. The focus of the above 

discussion is the project class. If the discussion is about a composition [18] such as the 

PAMPA project list, i.e. ProjectList, class, then two instances of the project list class can 

be represented as in Figure 3: 
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Fig. 3. Two instances of the project list class 

Figure 4 is the PAMPA knowledge base, which contains 35 classes. Both the 

project list class and the project class are part of this PAMPA class diagram. 

 

 

Fig. 4. PAMPA classes 



www.manaraa.com

 5

We are interested in the artifact class at the lower right hand side of the graph 

because artifacts are tangible results created by software engineering activities, where 

Artifact is marked as a component of Subsystem, and Artifact is composed of Chunk. In 

this model, artifacts are defined as project objects that are created and stored by software 

tools. In this case, the PAMPA artifact class is an abstract class composed of 

instantiateable classes: 

 

Fig. 5. Type of artifact classes 

Figure 5 illustrates further detail within the artifact’s three sub-classes: 

requirement, design, lines of code, and attributes of the requirement class; the count 

class attribute within the requirement class is zero because there are no instantiation of 

objects from that class. Further detail is necessary when software projects generate 

requirements, such as use cases or stories, and other types of artifacts during subsequent 

phases of the software development cycle. 



www.manaraa.com

 6

 

Fig. 6. Instantiated artifact objects 

The model is interested in measuring and recording the change of the count class 

attribute of the requirement class, which is graphically identified in Figure 6 with an 

arrow. In this particular scenario, there are 3 use case instances, and we say: 

“There are 3 requirement instances in the system. We are particularly interested 

in the ‘count’ class attribute of the requirement class. The count class attribute is 

measured by counting the number of requirement instances. At this time, the 

count class attribute has a quantity of 3 with unit of ‘requirement instances’.” 

and we represent the above statement mathematically through the following formula: 

))37,(),6,(),3,((_ 21 ++= nnn tttrecordtrequiremen , which indicates that there are 3 

requirement instances at time n, 6 at time n+1, and 37 at time n+2. 

The focus of this research is on the trend of the ‘count’ class attribute of artifacts. 

For each artifact record, both a straight line and an s-curve are used to model the 

dynamic change of the count variable. To accomplish this, a format was created and will 
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be introduced later in the paper; its function is to focus on the growth and readiness of 

the artifact count. These are two important operational-level measurements that can help 

in managing software on a day-to-day basis. Finally, a procedure to manage the process 

and creation of software artifacts is introduced.  

In creating and introducing these measures, this dissertation has contributed to 

the field by  identifying artifact counts as a grounded software project management 

activity measurement [29], thus creating a way to use them to both measure and to 

control the artifact generation process which in turn provides detailed in-process 

indicator of software engineering processes to help better managing the day-to-day 

activities of software engineering projects. These has been significant increase in the 

quantity of software code that are being created, both due to improving in software 

technology  and increase in overall software engineers. However managing software 

development are still mostly at the requirement level where the day-to-day activities are 

not being measured. However, the availability of s-curve parameters presented in this 

dissertation can be a starting point in the more scientific management of the software 

development process. 

A.  Software Artifact Attribute Magnitude 

Software Engineering is a result-oriented endeavor executed through disciplined 

processes, whereas software artifacts are essential results of software engineering.  

The latter is defined as a measurable item, retrievable with computer aided software 

engineering (CASE) tools; since a successful software project produces software 



www.manaraa.com

 8

artifacts that meet Requirements [11], examining artifact changes during the software 

life cycle can improve the production processes By which they are created. The specific 

variable that this study examines is the count of artifacts; the artifact instances are 

collected from all software life cycle phases, gathered by software tools. 

To date, a significant amount of software research has been focused on the Point 

Estimation of project attributes, such as size, defect count [56], and cost of software 

products [1, 4, 7, 24, 27]; only general, loose research has been conducted regarding 

production goals and estimations, especially those that are predictive, using information 

artifacts at early phases of the software life cycle, such as use cases, lines of code, object 

points, functional points [28], etc. A successful predictive model would make software 

cost estimates more accurate, and project resource allocation more proactive. 

While software engineering tools’ function is the transformation of artifacts from 

high-level human minds down to structured machine code that conforms to the Software 

Engineering Transformation Axis (SETA). At the more detailed end of the software 

engineering activity spectrum is executable code and source files; from these, 

researchers can generate detailed artifact visualizations [49, 51] retrieved from software 

tools, such as a configuration management system. As an example, a succinct mid-level 

software project perspective in SETA is provided by the PAMPA (Project Attribute 

Monitoring and Prediction Associate) software project template [42, 52]. However, 

neither the top-level attribute estimations, nor the low-level visualization techniques 

yield a perspective that’s detailed enough to understand artifact generation activities 

throughout the software life cycle.  
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Software engineering is result-oriented and, in order to achieve results, efficient 

artifact creation is necessary [47]. Since this process is usually team-oriented, each team 

member’s choices are important factors in determining efficiency and efficacy. To date, 

no other research has sufficiently examined these choices - choices that result in 

determining a project’s direction. Moreover, the path of each team member on a decision 

tree splits quickly because there are so many choices and variables along the way; these 

commonly include size, defect, and cost. 

We assert that continual storage and measurements of artifact values during 

software development can provide standardized [21, 22], quantitative values that help 

guide a detailed understanding of software artifact creation activities [2]. This 

dissertation achieves this by making a departure from tradition thought, in order to 

present a behavior of artifact magnitudes graphed and described using both s-curves [15] 

and straight lines from liner regressions. S-curves, traditionally found to be useful in 

describing technology adoption behaviors [12], are also useful when describing the 

magnitude of software projects; this is confirmed by our independent research. Using 

data from an experiment the researchers compared the S-curve against a linear graph 

approach and found the former to be superior.  

B. Organization of the Dissertation 

The rest of the dissertation is organized as follows. In Chapter II, operation-level 

software engineering activities are defined. Chapter III presents the experiment, where 

the collection of software project data is described. Chapter IV contains a description of 
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the measured data. Chapter V concludes the discussion by summarizing the findings and 

suggesting future work.  
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CHAPTER II 

 

OPERATIONAL LEVEL SOFTWARE ENGINEERING ACTIVITIES 

A. Introduction 

According to the Cone of Uncertainty software project description [8], the uncertainty of 

the possible cost, size, and features of a software product progressively decreases along 

the software construction phases, namely: initial concept, product definition, marketing 

requirement, technical requirement, design, test cases, and development. Within this 

process, different participants are interested in different objectives [33]. For instance, 

producers are interested in profit, software engineers are interested in building a quality 

product, software managers are interested in productivity and budgets [26], and users 

care about the value that the software system brings to their lives [9]. Many of these 

questions hinge on the estimation of software size and cost [19]. From the accounting 

perspective, one asks questions such as which account to charge for “time spent on 

talking with the customer” or question of fixed cost allocation. These individual 

accounting decisions affect the eventually profitability of a software project. However, 

existing research [5] has not addressed the lack of detailed association between software 

accounts and software artifacts created during the software life cycle; tracking artifacts is 

important to cost estimation because it can use the life cycle to breakdown software 

costs [34, 48]. Unfortunately though, only high-level accounting information are 

available to project management in most software projects. This research presents a way 
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to more easily track Artifacts - defined as any object that is stored by software tools. The 

goal of software projects is to create executable code that satisfies requirements derived 

from the original concept. The process of creating software involves many steps; to 

accurately estimate costs, a model needs to individually examine these steps. 

 A program starts with an object code, created by the assembler software tool; 

this tool then translates assembly code to specific machine code. The source of assembly 

code is run through language compilers, which then translates source code into assembly 

code. Moving up the software translation axis, source code are generated either by 

software engineers or by automatic program generators; these then automatic program 

generators can create source code based on design document that are used by software 

engineers.  

Moving further up the translation axis, design documentation and specification 

are created by human from requirement documents.  We define all the intermediate 

items that represent the original software product concept as Artifacts, including the final 

machine code. We also note that these progressively more specific artifacts are created 

by software tools and humans. Each type of artifact is associated with a number and a 

unit, for example, a use-case type artifact might have a value of ‘7 Use Case Count’ and 

a machine code type artifact might have a value of ‘5,783 Byte Count’. Specifically, the 

types of artifact that have been collected are shown in Table 1: 
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Table 1. Artifact and Artifact Unit 

Artifact Type Artifact Unit Example Artifact  Value 

Issue Issue Count ’12 Issue Count’ 

Source File Source File Count ‘3,541 Source File Count’ 

Line of Code Line of Code Count ‘7,758 Line of Code Count’ 

Design Object Design Object Count ’14 Design Object Count’ 

Test Case Yes Test Case Yes Count ‘29 Test Case Yes Count’ 

Requirement Requirement Count ’74 Requirement Count’ 

Database Table Database Table Count ‘7 Database Table Count’ 

Operand Operand Count ‘6,622 Operand Count’ 

Operator Operator Count ‘3,940 Operator Count’ 

Unique Operand Unique Operand Count ‘1,158 Unique Operand Count’

Unique Operator Unique Operator Count ’23 Unique Operator Count’ 

 

We have described the various types of software artifacts and software tools that 

generate those artifacts. PAMPA (Project Attribute Monitoring and Prediction 

Associate) provides a perspective on the relationship between software project objects 

and a framework for the application of software processes [49]. The PAMPA perspective 

is shown below: 



www.manaraa.com

 14

 

Fig. 7. Project Attribute Monitoring and Prediction Associate (PAMPA) 

The software tools at the lower-center part of Figure 7 both help the technical 

personnel to create the software system and provide important project measurements for 

software project management. This research focuses on the operational-level activities of 

generating artifacts. Artifacts - the essential result of a software project, also include 

very structured software Executables and Source Code. For example, a high-level 

software engineering artifact could be a story (contains 31 words) such as: 

Write a short program to verify the successful creation of a 
development environment for developing C language applications, 
verify the editor, compiler, and the integrated development 
environment have been installed correctly. 
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and a partial listing of the complete transformation of the above story along the same 

conceptual transformation axis to the final low-level Intel processor-based machine code 

(containing 8,873 bytes): 

 
0016540 000000 002401 000000 000570 000000 000004 000000 000002 
0016560 000000 000000 002427 000000 050000 000100 237777 000000 
0016600 000002 002447 000000 053537 067151 060515 067151 051103 
0016660 061537 072162 000060 057537 074543 073547 067151 061537 

 

The above example lists the extreme possibilities of an artifact.  

Software projects can be defined in three-levels: Strategic, Operational, and 

Tactical. The former can include deciding what to build and placement of the software 

product in the market place, Tactical activities can include locating defects or building of 

an executable, while the majority of the software engineering process involve 

Operational activities. These include processes like artifacts translation, from general 

artifacts to more specific types, then finally to executable code. The most interesting 

aspect to both researchers and practitioners is the translation from a high-level concept to 

concrete machine code. This involves operation-level perspective of daily activities of 

generating software artifacts. These activities are usually facilitated by software tools, 

such as configuration management, graphical design, issue tracking, requirement 

management, etc. Recent software engineering environments, involving concurrent 

wide-geographic development, Agile development [3, 6], commercial off-the-shelf 

(COTS), and component engineering, also highlight the utility of software engineering 

tools as a binder that unites the software engineering processes. Software engineering 

tools provide situation awareness of the present software project [14, 45]; that is, 
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providing a managerial-level perspective of the life cycle of software artifacts through 

out the requirement, testing, design, development, and maintenance phases of a software 

project. 

In this dissertation, a software project’s artifacts have been collected using 

software engineering tools. Eleven project artifacts have been collected as part of the 

Canonical Attribute Project Set (CAPS). They are Requirement Count, Lines of Code, 

File Count, Issue Count, Design Objects, Test Cases, Unique Operator Count, Unique 

Operand Count, Operator Count, Operand Count, and Database Table Count. 

B. Software Artifact Description 

Requirement Count is the number of requirements derived from Extreme Programming 

stories. An Extreme Programming (XP) [37, 41] practice story gives a description of 

desired system behavior. Larger more vague stories can be broken down into sub-

requirements or Use Cases. A Use Case is a specific description of a functionality 

provide by the system to the user.   

Design Object Count is the number of design-related artifacts generated from 

the requirement. Design objects based on the Unified Modeling Language (UML) 

include Use Cases, Object Diagrams, Class Diagram, Relational Database Model, 

Sequence Diagram, etc.  

Database Table Count is the number of database tables created to meet the 

requirement. Usually each table represent a Class in the object-oriented representation. 
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In addition, database tables can also represent Business Processes, Conceptual Ideas, and 

any other items that need to be processed by computing systems. 

Lines of Code (LOC) are the lines of source code that were created by the 

develop team to satisfy the requirements. In this particular study, JavaScript and JSP are 

the main types of source code, which are instantiated by an Apache web server when 

accessed by a web client. 

File Count is the number of files that were created by the development team to 

satisfy the requirements. Both external files and team-created files are involved in many 

software projects. The source of external files stem mainly from the user interface, 

database, and web services platforms. These include graphical user interface builders 

and help files, database source files and interface files, and web server source code and 

interface files. 

Unique Operator Count is the number of unique operators in the source code. 

Operators transformation of numbers and numerical calculations. In addition, operator 

can transform strings and software objects.  

Unique Operand Count is the number of unique operands in the source code. 

These are mainly variables that representing numbers, text, and codified conceptual 

objects.   

Operator Count is the total number of operators in the source code to meet the 

requirements. Operators indicate the size and variety of transformation that the software 

project uses to satisfy the requirement. 
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Operand Count is the total number of operands in the source code created to 

meet the requirements. Operand count indicates in general the scope and size of facts 

that need to be represented, managed, and transformed by the software product to satisfy 

the requirements. 

Issue Count is the number of report that shows deviation from requirements or 

expected software behavior that significantly affect the efficiency of the interaction 

between the software system and the user. In addition, issues also describe software 

development situations that affect the effective operation of the development process. 

An example of development process-related issues include: development environment 

readiness and efficiency. While readiness and efficiency are not quantitative, reports of 

these situations are countable. 

C. Conclusion 

In this chapter, we have described the activities within the software engineering process 

that generate artifacts; in addition, artifacts from the software life cycle phases during 

the experiment were described and defined. Following, terms were introduced in order to 

set the context of the software project experiment. A brief description of the concept and 

purpose of software engineering tools were also given, namely, the translation of 

software engineering artifacts into progressively more specific artifacts.  
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 CHAPTER III 

 

COLLECTING PROJECT DATA 

A. Introduction  

Artifacts were collected using software engineering tools from a single semester 

graduate-level software engineering course. The course lab structure was based on 

industry software development organization and structure. The project followed the 

Extreme Programming practice (XP) and a successful electronic commerce web site 

named Purchase Tracker was created. Software engineering tools were used to facilitate 

the construction of the electronic commerce web site and were also used for collecting 

software artifacts [54].  

B. Experiment Description  

Eighteen graduate students participated in this software engineering project, which 

mirrored an industrial software development project.  The project’s goal as part of a 

graduate-level software engineering course was to create an electronic commerce web-

site named Purchase Tracker. In addition, part of the class formed a separate team whose 

role was to collect project artifacts that were being created by the Application Team. The 

Application Team followed the Extreme Programming (XP) practice throughout the 

project period (100 days) and gave five demos, one each at project day 24, 52, 80, 94, 
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and 100. The application was successfully completed by satisfying 29 out of the 30 test 

cases.  

The structure of the two teams is shown in Figure 8: 

 

Fig. 8. Experiment team organization 

The customer role provided the team with stories for both the application team 

and the measurement team. The main function of the Customer is to clarify requirement 

and provide feed back to the project. The Director is the over-all coordinator of 

activities. Each team has a Project Lead, charged with carrying out the Developer’s role. 

Each of the team members are assigned three stories through mutual agreement.  

The developers of the application team focused on the electronic commerce 

application and carried out the extreme programming practice with parallel requirement 

gathering, design, development, and testing. Fire application demonstrations were 

carried out; these were important milestones in moving the artifact magnitudes towards 
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the final value. The main function of the testers was to author the Test Cases that 

validate the Stories. The final test cases were agreed upon by the developers, and the 

testers carried out the testing throughout the development process. Two Collectors were 

responsible for the task of collecting artifacts. Their roles were specifically created to 

assure focus and consistency of the collecting process.  

Weekly reports were written and entered into the SSIP (Shared Software 

Infrastructure Program) web site. The team members were able to view each other’s 

weekly report to enhance communication. The team members were recommended to 

spend around 9 hours per week on the project; thus, over 2,340 labor hours were spent 

on the Application and the Measurement project. 

C. Application Description 

The application is a three-tier electronic application with a web-based user interface, an 

application server (hosting Java server page code), and a database server. 

D. Software Tools Description  

Many software tools were used to collect artifact information: RequisitePro was used to 

track the requirements; Rational Software Architect (RSA) was used to construct design 

phase artifacts; Eclipse was used as the Integrated Software Development platform; 

ClearQuest was used to track the issues that were generated by the team during the 

development process. In addition, a configuration management system was used to store 

artifacts, and operating system shell scripts were used to collect artifacts. The Dynamic 
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Artifact Tracking Console (DATC) was also used to assist in the collection of artifact 

from the tools. 

E. Process Description  

The quality of crafted software depends strongly on the ability of individual 

programmer; this differs from engineering software, wherein predictable applications are 

possible with a various range of programmers with different skill sets and experiences. 

This is due to the software engineering processes, where each participant is responsible 

for one or more software processes. Below is a table, Table 2, of the processes that were 

followed for the project experiment: 

Table 2. Software Engineering Experiment Team Processes 

Measurement 
process 

1.1 Form the team and assign role 
 

            1.2 Requirement Gathering Process 
                     Define initial software project measurements for 

collection 
 
            1.3 Understand the operation of existing measurement tools
                  Understand requirement collection tool operation 
                  Understand configuration collection tool operation 
                  Understand problem report collection tool operation 
            1.4 Create database for storing measurements 
            1.5 While not end of Application Project 
                        1.5.1 Collect measurements daily 
                        1.5. 2 Store measurement 
                        1.5.3 Display measurement 
                        1.5.4 If project demonstration time 
                                    Demonstrate project 
                        End If 

End while 
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Table 2. Continued 

Application Development 
process 

            2.1 Form the team and assign role 
            2.2 Requirement Gathering Process 
                        Generate Use Cases 
                                    Talk to project director and 
customer 
            2.3 While Application is not done 
                        2.3.1 Design Process 
                        2.3.2 Implementation Process 
                                    Understand design 
                                    If source file not created 
                                                Create source file in 
configuration system 
                                    Check out source file 
                                    Edit source file 
                                    Unit test 
                                    Check in source file 
                        2.3.3 Testing Process 
                                    If there is a problem 
                                                Do problem report process 
                        2.3.4 Build Process 
                                    Check out source code 
                                    Build application 
                                    Report build result 
                        2.3.5 If project demonstration time 
                                    Demonstration project 
                        End If 
            End While 

Configuration Management 
Process 

            3.1 Set up initial software development tools 
                        Set up requirement management tool 
                        Set up source code configuration tool 
                        Set up problem report tool 
            3.2 Build Application Project daily 
  

Problem Report Process             4.1 Generate problem report 
  

Problem Resolution Process 

            5.1 View Problems 
            5.2 Assign priority 
            5.3 Assign problem to appropriate role 
  

Consultation Process             6.1 Identify uncertainty and form question 



www.manaraa.com

 24

Table 2. Continued 

Consultation Process 
            6.2 Ask consultant question 
            6.3 Listen to answer and resolve uncertainty 
  

Course Administration 
Process 

            7.1 Enter weekly report at the HUB web site by 
Saturday. 

            7.2 Attend weekly laboratory coordination 
            7.3 Read and respond to cpsc606 emails 
            7.4 Contribute to project discussion 
  

 

F. Software Artifact Source  

Software artifacts were collected during the experiment to give the stakeholders a higher 

and more abstract level of project situation assessment. We focus on software artifacts 

because they are tangible and measurable. The necessary product for this particular 

project is binary, Intel Corporation code that moves from hard disk storage to random 

access memory, then to processing unit registers and cache memory. This code, in the 

processing unit, receives environmental human inputs mediated through the likely path 

of a remote client computer transferred through the network protocol stack. The received 

signals are processed according to the operators defined by the machine processor; 

output signals are then emitted from the processor to the user through a similar path. In 

addition to the response to the human user, some of the output signals might be targeted 

toward the manipulation of an external environment not directly related to the human 

user. Such signals might impart storage and retrieval of information and data.  
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While the result of the software engineering process is binary code, it takes 

software tools to achieve this. In the earliest days of programming, binary code was 

directly entered into the computing machine. In those earlier days of software 

engineering, when viewing the phases of software life cycle and possible artifacts, most 

of the indicators were displayed in unstructured, text form. In the requirement phase, the 

developer would formulate the environment and possibly transcribe them in the 

laboratory notebook. At the same time, he would start to design the software and also 

have the option of writing down any design on the laboratory notebook. The 

development and phases would possibly involve detailed step-by-step instruction where 

“unit test” is carried out after the actual bits of a register has been loaded into the core 

memory. Expectation of the result can be written down in a structured way or might be 

kept in the ‘developer’ mind. The artifacts from this earliest stage of software 

development is the laboratory notebook. The machine executables were not part of the 

artifact because the code were not stored. 

The first historic significant tool in the programming paradigm is the assembler. 

This is a software tool that translates written human language mnemonics into binary 

code. Assembly language is human readable and bridges between the conceptual level of 

software engineering to the binary software product. The ensuing development of 

software tools takes a higher concept object along this conceptual axis and translates it 

down to a more concrete object. We call this the Software Engineering Translation Axis 

(SETA). The instantiation of the highest level of abstraction along this axis are human 

thoughts, the next lower level, or more concrete level, are natural written and spoken 
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words, and the levels below that are more structured thoughts that are characterized by 

sequence of patterns. Continuing to the specific, the next level SETA objects are 

structured, written and spoken words, such as an ‘instructional manual’ or ‘medical 

doctor patient oral report protocol’, while the lowest level of SETA are physical binary 

code instantiations that control binary gates of a computing machinery processor. 

Within the SETA context, we define a SETA object, s, as an object with a 

structure property, ‘ )(⋅struct ’. The upper limit of the structure property of a SETA 

object is human thought; for the purpose of software engineering artifact measurement, 

we define a human thought unit as a record of time lapse of three-dimensional electrical 

activities, T. It is interesting to note that while we are describing the translation of 

abstract and unstructured thoughts down to definitive instructions on a machine 

processor, the fact is that these SETA objects, which are at the extreme ends of the axis, 

are both instantiated as time lapsed electrical activities. Excruciating amounts of 

resources are currently spent on translating between these two sets of electrical patterns, 

mostly from the less-structured end to the more-structured end for software engineering 

processes. More specifically, this research focuses on a particular type of human thought 

- conceptual thoughts that contain patterns. This research does not concern brain firing 

patterns, essentially anything within the brain that spurs action outside of it (such as 

moving limbs or other body parts); this is because of the causal relationship between the 

cause and effect of these thoughts. 

For example, this research would model patterns from a pilot’s thoughts during 

landing, or something as abstract as a pattern representing a rocket’s launch to Mars. To 
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point out the expansiveness and immediacy of human thought - a set might include a 

stone carver chipping away on a large round stone disk, another could be an English 

publication that interprets the carvings on the stone disk. As we have illustrated from 

these examples, the present capabilities of computing machineries are certainly not 

capable of physically instantiate all high-level SETA objects. We focus on preferred 

sequence of patterns because these high-level SETA object can have interesting software 

engineering (ISE) consequences; they are transferable to executable code that can run on 

state-of-the-art computing machines. We represent these ISE conceptual thoughts as 

})(|{ μ>TT oISEo , where mu is a threshold of interestingness that is based on the 

present capability of the software engineering processes. That is, ISE objects afford an 

opportunity for software engineering processes to translate these patterns down to binary 

code (which we represent it by executableo ) that controls machine processors to instantiate 

the high-level ISE pattern. This has been difficult because of possibility of a wide gap 

between the representation capabilities of SETA objects at the ends of the spectrum.  

At one end of the axis, patterns that represent different time periods, wide 

geographic locations, and range of details can all co-exist at the same time in a mind; at 

the other exist computing machines that, at the time of this research, are still not capable 

of representing the same patterns as the mind. However, that assertion has not been 

calculated.  Moreover, it is not the purpose software engineering to duplicate the pattern 

of thoughts on computing machineries. The practice of software engineering is to 

instantiate high-level SETA objects to machine instructions that has an impact in the 

real-world. Taking the earlier landing gear example, it is mischievous to instantiate 
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computer code that displays pictures of the landing process. It is prudent and correct if 

the software engineering process created an embedded landing gear control system that 

was represented by the original high-level SETA object. At this point, we simply define 

the software engineering processes as activities that translates a human thought SETA 

object to a binary SETA object. That is, below is the transformation of a SETA object by 

the software engineering processes  

executablenbegin oooo →→→→ L1  

We define a Software Engineering Tool as a set of translators where each translator can 

change the structure of SETA object. Let },,,{ nji oooO L= be a set of SETA objects and 

ba OOt a)(  be a translator that maps a set of software engineering objects to another set 

of software engineering objects; thus, Software Engineering Tools transform one or 

more objects into more objects with the main goal of eventually creating the binary 

object, UtT = . For example, the traditional sequential software life cycle can be 

represented as: 

executabletdevelopmen
T

designtesting
TT

trequiremen
T

begin oOOOOo tdevelopmendesigntestingtrequiremen ∧⎯⎯⎯ →⎯∧⎯⎯⎯⎯ →⎯⎯⎯⎯ →⎯ ,  

In this sequence, a high-level object is the input for the requirement tool which resulted 

in as set of requirements objects. These requirement objects are consumed by testing and 

design tools to generate testing and design objects. Developers take testing and design 

objects and create development objects, including the goal of the software engineering 

process, the executables. We define software artifacts as SETA objects generated by 
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software engineering tools. Software artifacts are alternatively defined as SETA objects 

that have been created using software tools.  

We take a closer examination of the relationship between SETA objects, tools, 

and the software engineering process by using a simple example. In this example, 

researchers want to generate a set of canon angles for accurate placement of projectiles. 

In this case, the high-level source object - the beginning of the software engineering 

process, includes a pattern of parabolic mathematical equations, images of canons, and 

understanding of wind, direction, weather conditions, and other factors that can affect 

the flight of trajectory. Another pattern in the beginning set of high-level objects is a 

soldier looking up a firing table and sets the canon according to the numbers printed in 

the table; they are very simple patterns that are easily understood at a high level. The 

other end of SETA spectrum is binary or executable codes that display values in the 

firing table. We examine the software engineering process with the following: 

executabletdevelopmentrequiremendesign
T

begin ooooO notebook ∧∧∧⎯⎯ →⎯  

The original pattern object is on the left-hand side of the graph (above), and the final 

executable object at the right-hand side. The software engineering process involves the 

utilization of the software engineering tool that is an engineering notebook. In the 

notebook the requirement, design, development, and executable are all recorded in an 

orderly fashion, and artifacts (design, requirement, development, executable) can be 

obtained directly from the software engineering tool. We note that even at this very 

simple level, the software engineering tool function as an extended memory and 
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organizer of the human mind; it is a fact that selection of appropriate software tools can 

assure successful execution of software engineering process. 

We now look at a more recent example of software engineering project, Web 

Services. Once again, the high-level SETA object is fairly straight forward. It contains 

some patters of ideas. In this web services case, the pattern would be multi-perspective 

but simple nevertheless due to its high-level. The begin object contains patterns of sales 

transaction, concept database, and value of information. There might be a storyboard-

like sequence of a client computer automatically asking geo-location server its latest 

location; in the process, one pays the server computer a small sum for the information. 

The client computer then contacts a highway traffic server for the estimate congestion 

spots; it also pays the server a price for the information and, with the information, 

figures out the best route to the destination. This high-level SETA object would take 

longer to be translated to executables, and software tools and disciplined software 

engineering processes certainly would be necessary in this endeavor. We display the 

transformation below: 

 executabletdevelopmendesigntesting
TTT

trequiremen
T

begin oOOOOo tdevelopmendesigntestingtrequiremen ∧∧∧⎯⎯⎯⎯⎯⎯ →⎯⎯⎯⎯ →⎯ ,,  

The above is a description of the Extreme Programming practice, where testing, design, 

and development are executed in parallel. We note that in the description above, the 

required tools are used in order to generate requirement objects before the testing, 

design, and the development process. This order need not be followed strictly, since 

high-level requirement object would need to be translated into more structured objects, 
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in order to move towards the concrete executable along the Software Engineering 

Translation Axis.  

G. Conclusion  

The project is an Extreme Programming (XP) project carried out by a team with some 

inexperienced team members. Artifacts were collected to assess the operational activities 

of the team. In addition, the project collected data that indicates the generation of 

software attribute magnitudes during the project. This practice is ‘developer and result-

centric’, wherein a small number of capable developers have a clear vision of the final 

product and are charged to produce a product with a high demonstration rate and low 

documentation activity [40]. The functionality of the final product is based on the 

personal activities carried out by the software engineers, thus it is paramount that the 

team members understand the expectation of the final product. In the Extreme 

Programming practice, documentation and testing activities are traded for rapid turn-

around time and frequent Demonstrations. The artifacts exhibit evidence of the Extreme 

Programming activities that have been carried out in this software engineering 

experiment. 
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CHAPTER IV 

 

MEASURE AND DATA DESCRIPTION 

A. Introduction 

Significant progress has been made concerning software engineering processes and 

project estimation of cost and size. As processes are broken down to activities, 

operational measurement becomes valuable to software team members, developers, 

leads, and managers because operation-level activities generate artifacts. Availability of 

measurement [55] is analog to a mirror, and can give a person visual feedback for 

improvement; this is in contrast to high-level measurements, such as cost. Understanding 

operational activities however, require visibility at the activity level [53]; thus, software 

tools that store the result of operational level activities (namely artifacts) can be used 

additionally as a tool for an operational-level activity assessor.  

For example, imagine a software engineer sitting in from of a state-of-the-art 

machine displaying an Integrated Development Environment (IDE). How does the 

software engineer know the state of the software project, or even the progress of his own 

particular part of the project? Similarly, how does the software manager answer the same 

question? In the experiment using the Extreme Programming practice, the remedy is to 

have a Demonstration as often as possible. However, this only solves part of the 

problem, as a Demonstration is only a local illustration of a much larger software 

landscape. A chart that spans time can provide higher-level perspective that can benefit 
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equally higher-level actions such as resource planning [46]. This section gives 

prescriptive direction regarding the processing of artifact information collected from 

software engineering tools to a standard format called Normal Proportion Artifact Graph 

(NPAG). NPAG enables the display of multiple artifacts in a single graph without Unit 

Collision or Scaling Problem. From this format, we give a graphing procedures using the 

s-curve and liner fitting because these can generate grounded quantitative measurements 

and visualizations that serve to improve team members’ understandings of the present 

state of the software project. Lastly, we provide a procedure for using the graph 

parameter values as an easy-to-use Control Variable for the operation-level, artifact 

generation, software engineering processes. 

B. Unit Description 

The record of collected artifacts is instantiated as a sequence of pairs, where the first 

item of the pair is a time-dependent value and the second item is an artifact-dependent 

value. For this experiment, the unit of the time-dependent value is ‘day’ and the units of 

the artifacts being collected are listed in Table 3: 

Table 3. Description of Artifacts’ Units 

Artifact Definition Unit Example 
Unique 
Operator 

Unique operators 
inside the source 
code. 

“Unique 
Operator” 

In this routine there are 3 Unique 
Operators: ‘+’, “*”, ‘-“. 

Unique 
Operand 

Unique operands 
inside the source 
code. 

“Unique 
Operand” 

In this routine there are 2 unique 
operands: “count” and 
“max_count”. 

Operator Number of operators 
inside the source 

“Operator” There are 5 operators in the 
routine: ‘+’, ‘+’, ‘+’, ‘-‘, and  
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Table 3. Continued 
 

Artifact Definition Unit Example 
 code.  ‘/’ 
Operand Number of operands 

inside the source 
code. 

“Operand” There are 4 operands in this 
routine: “count”, “count”, 
“count”, “max_count”. 

Database 
Table 

Number of database 
tables used for the 
application 

“Table” There are 6 database used in 
the application. 

Requirement Number of 
requirements. 

“Requirement 
Count” 

There are 21 requirements that 
have been met in this phase of 
the development. 

Yes Case Number of test cases 
that are classified as 
Pass. 

“Yes Case” 14 out of 50 test cases were 
assigned with a value of 
“Pass” 

Design 
Object 

Number of design 
objects. 

“Design 
Artifact” 

There are 30 design graphs 
created using the tool. 

Lines of 
Code 

Number of lines of 
code. 

“Lines of 
Code” 

There are over 20,000 lines of 
code in this directory. 

File Number of files. “File” There are 192 files in this 
directory. 

Issue Number of issues 
being tracked. 

“Issue” After 3 month of development, 
the we have over 40 issues in 
the issue tracking database. 

 

C. Normal Proportion Artifact Graph (NPAG) Format 

Figure 9 contains direct plots of the eleven artifacts collected during the experiment. 

Viewing all the artifact data in a single display can provide a larger perspective in 

understanding the software engineering operation process. However, Figure 9 is not an 

appropriate display, due to unit collision and scaling problem of the vertical axis. 
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Fig. 9. Raw artifact values displayed in a single graph with unit collision and scaling 

problems 

Unit collision occurs when attempting to display various units of artifacts on a 

single vertical axis, which cause confusion to the viewer of a graph; whereas Scaling 

Problem occurs when the simultaneous display of various artifact ranges cause smaller-

range and smaller-sized artifacts to be overwhelmed by larger-range and sized attributes. 

We propose the Normal Proportion Artifact Graph (NPAG) format as a standard 

visualization format for the display of software engineering artifact data [23, 25]. The 

NPAG format focuses on the relationship between the artifact with respect to time, 

independent to the absolute magnitude or the unit of the artifact. This idea of using 

proportion to compare the quantity of different magnitude is analogous to using rate of 

return to represent return on investment. For example, the profits from three software 
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applications might be $5,000, $10,000, and $50,000 per year (from an absolute 

perspective), the profit from these software applications can be presented as 30 %, 60%, 

and 2%, respectively.  The NPAG format eliminates both unit collision and the scaling 

problems with a single justifiable transformation; this is possible by dividing each value 

of an artifact’s record data with its maximum value, including the artifact’s Unit: 

100
max

⋅=
c
cp i

i  

For example, if the maximum value of the artifact Requirement Count artifact is 57 

ReqCount and at time 50 its value is 47 ReqCount, we carry out the transformation thus, 

 

82'100
57
47'100

ReqCount 57
ReqCount 47'ReqCount 47 50505050 =⋅⋅== cccc aaa  

 

and map the value of 50c  from ‘47 ReqCount’ to 82, which we can use justifiably as a 

proportional number 82. The result of the NPAG transformation is a sequence of artifact 

values in [0,100] that indicate the proportion of the artifact magnitude to the maximum 

artifact value along the project timeline. We point out that this operation is clearly 

different than dividing the artifact values by a unit-less number, such an operation would 

require justification in both why the particular number was used, and also why the 

division operation was carried out. On the other hand, we justify the operation (divide 

artifact values by the maximum artifact value) by stating the desire to view all artifacts 

in the same graph. The resultant proportion is a grounded experimental value and an 

creditable indicator to the percentage the magnitude of the artifact to its maximum value. 
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When viewed along the horizontal time line, the change of the artifact 

magnitudes can indicate the generation behavior of the artifact. We note that this 

operation is not an un-grounded transformation of the artifact values by an unjustified 

parameter; it is a factual transformation of the artifact values to a scale that enables the 

comparison of all artifact records at the same time. Figure 10 is the Normal Proportion 

Artifact Graph (NPAG) for this experiment: 

 

 

Fig. 10. Normalized artifact magnitudes sample 1 

In the above graph, the horizontal axis ranges from 0 to 100; this denotes the start 

and end time of the project. The vertical axis also spans from 0 to 100, noting the 

proportion of the artifact’s magnitude relative to its maximum size. Since the vertical 

axis values are derived by dividing the original united value by that of the maximum 

united value, the value is a proportion. An example of description of a sequence of 

artifact values in a the NPAG format would be “At half-way through the project, the 
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Requirement (brown colored) artifact has reached close to 70 percent of its maximum 

magnitude. The Unit of requirement is Requirement Count.” 

The set of experimental data are processed to a standard format for investigation. 

The time span of the data is from the beginning of the software project to the completion 

of the project. However, it is possible for the time span to be any reasonable segment of 

time, which ends with a milestone. For the experimental project, the requirements were 

met. 

The collected artifact values are composed of a sequence of pairs, where the first 

item is a time indicator and the second of the pair is the particular artifact’s magnitude, 

)),(,),,(),,(( 1100 nn atatat L . For example, the loc (line of code) artifact contains a 

sequence of pairs with units of day and line of code, and the requirement artifact is a 

sequence of pairs with units day and requirement count. The sequence is automatically 

created by software tools. During the project, software tools periodically measure the 

size of a particular artifact and create a record of that fact and store it with its 

corresponding time-related value. The time unit in this particular study is the number of 

days that have passed since the start of the project; in future research, units can be: built 

number of the project, release of the project, etc.  While various progress indicator can 

be used for the independent variable axis -- through the normalization process where 

each measure is divided by the maximum measurement of the sequence -- 

last

i
i t

tt ='
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the time indicator becomes a unit-less time indicator. The purpose of normalizing the 

time indicator is to enable a possible comparison between projects of varying durations. 

Through normalization, a project’s time measurement becomes a universal time 

indicator in [0,100]; that is, it indicates the percentage of time consumed before the 

project stops. 

Through the same process of dividing each of the artifacts in the recorded 

sequence by the maximum artifact value, we transform the artifact from a particular 

value (a numerical number and a unit) to a unit-less representation of proportion. Both 

the time axis and the vertical axis become a proportion after the normalization process. 

The purpose of the normalization process is to map all artifacts onto the same vertical 

axis which indicates the progress of the artifact generation towards the final magnitude 

at the end of the time segment. To provide a standard perspective, the vertical axis is 

displayed at 2/3 of the length of the horizontal axis. 

 

 

Fig. 11. Normalized artifact magnitudes sample 2 
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The Figure 11 NPAG shows Unique Operators, Unique Operands, Operator 

Count, Operand Count, Database Table Count, Requirement Count, Test Cases, Design 

Object Count, Line of Code, File Count, and Issue Count. 

This section gives more specific description of the Normalized Proportion 

Artifact Graph (NPAG) format. In this format, the plot illustrates the generation of a 

particular, tracked from 0 percent of the final magnitude of 100 percent (the maximum 

attribute value during the project period).  

As software tools are being used to collects various artifacts in a project, the pair 

),( ii at represents the time and artifact value. At the end of the collection period, an 

artifact record is a sequence of pairs )),(,),,(),,(( 1100 nn atatatr L= . Let maxt  and maxa  be 

the maximum value of the sequence. For instance, these values might be ‘23 release’ or 

‘9,450 lines of code’. We transform each of the values in the sequence thus 

100'
max

⋅=
t
ttt i

ii a  and 100'
max

⋅=
a
aaa i

ii a , and we define this sequence of transformed 

artifact values as ))','(,),','(),','(( 1100 nnNPAG atatatr L= . A collection of artifact record 

in NPAG format is represent as NPAGnrrr },,,{ 21 L . Eleven artifact records were collected 

in the experiment that was carried out by the author, as shown in Figure 12 below: 
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NPAGnrrr },,,{ 21 L  

Fig. 12. NPAG data representation and graph  

D.  S-curve and Straight Line Description 

The S-curve is an equation defined as 
)exp(1 tgr

Lc
⋅−⋅+

= , where t is the independent 

variable, c is the dependent variable, g and r are parameters, and L is a constant. A 

possible usage of the equation is to fit a sequence of t and c pairs to derive the g and r 

parameters using the log-compression transformation, followed by the linear regression 

fitting procedure to derive the readiness and generation parameters. Figure 13 

summarizes the steps of the transformation. 
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Fig. 13. Fitting an s-curve 

S-curve can be used to describe adaptation of technology [17] or infection rate of 

malware such as a worm [54] with the passage of time, or other adaptation-related 

measurements. In our context, we use a s-curve to describe the evolution of a software 

artifact. 

Two important parameters of an s-curve are those describing readiness and 

generation - characteristics of how the artifact was generated by the development team, 

Figure 14. A project team generates multiple artifacts; thus, each sequence of artifact 

counts result in a pair of s-curve parameters. These can be an indicator of a team’s 

artifact generation capability. A project team generates multiple artifacts in a time 

period; thus, it is reasonable to characterize a team’s artifact generation capability based 

on the team’s artifact generation history, which is based on the ground parameters of the 

s-curves, )),(,),,(),,(( 1100 nn grgrgrfcapability L= . Generally, it is desirable to 

generate artifacts as early and as quickly as possible. 
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Fig. 14. S-curves with various readiness parameter values 

The vertical axis indicates the percent of artifact being generated when compared 

to the final artifact size. r is the smallest for s-curves at the left of the graph and r value 

is large to the right. In other words, smaller r value indicates that the artifacts were being 

created earlier in the project. Similarly, we show the equivalent effect of the readiness 

parameter when graphing NPAG formatted graph use liner regression fit. Similarly, 

when we use a liner graph to describe the experimental data, the descriptive range of the 

lines can be characterized by the horizontal axis intercept parameter. Below are the 

linear fitted plots with t-intercept values of 0, 10, 30, 50, 70, and 90: 

We note that the Churn (pink-colored curve in Figure 15) of s-curve behaves in 

an expected diminishing way for ready-to-release software [20]. 
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Fig. 15. S-curve and its diminishing churn 

An s-curve is described by 
)exp(1 tgr

Lc
⋅−⋅+

= , where t is a time-related 

variable and c indicates completion percentage, as measured from the ending artifact 

size. The parameters r and g indicate the readiness and generation characteristic of the s-

curve. 

1. The Readiness Parameter 

The readiness parameter indicates when the software team begins to produce the artifact. 

Figure 15 above shows 6 example curves, with readiness values 1, 10, 100, 1000, 10000, 

and 100000. 
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Fig. 16. Linear graph of various intercept parameter values 

We note that the lines intercept the horizontal time axis at different locations, 

Figure 16. This can be interpreted as the time when the artifact generation has begun. 

For example, the pink line indicates that the creation of that artifact begins when at when 

10 of the project has been completed, and reached 100 percent of the ending artifact 

magnitude at the end of the project time (where the horizontal axis is at 100). On the 

other hand, the purple line denotes the beginning of the artifact creation, when 70 

percent of the project time has passed and the artifact value is at 10 percent of the final 

magnitude of the artifact. This is an important point. We note that liner fitting of a line to 

an NPAG formatted graph are not likely to end with the artifact magnitude at 100 

percent of the artifact magnitude. This is a disadvantage of using liner fit on the NPAG.  
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2. The Generation Parameter 

The generation parameter indicates how quickly the development team is able to 

generate artifacts. The Figure 17 shows lines with generation values of 0.5, 0.2, 0.15, 

0.1, 0.05, and 0.02. 

 

Fig. 17. S-curves with various generator parameter values 

In this graph we see that all the artifact lines started at time 0 and most finished at 

the 100 mark at the end of the project time (except the pink and the blue line). The first 

line (brown) show that the artifact magnitude represents a quick rise to its final size at 

about 20 percent into the project, while the yellow line grows more slowly and finally 

reached the final artifact size close to the end of the project. Thus, the generation 

parameter of the s-curve describes the quickness in which the artifact magnitude grow to 

reach its project ending size. 
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In addition to using the s-curve, it is reasonable to use linear regression to 

analyze the artifact size. We investigate the representational range of that graph by using 

an equivalent of the s-curve generation parameter slope. Figure 18 below shows various 

plots with a constant t-intercept parameter value and with various generator values, 10, 

5, 2, 1, and 0.2: 

 

Fig. 18. Linear fit with various generator parameter values 

We note that all the graph begins at 10 percent of the project time and grows at 

various rate. The blue plot indicates the final artifact magnitude, reached at a point close 

to 20 percent of the final project magnitude, while the pink plot reached 90 percent of 

the final artifact size. For artifact with faster generation, a larger generator value 

indicates faster artifact creation.  
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3. The S-curve Constant 

We have described the readiness and the generation parameters of the s-curve, 

)exp(1 tgr
Lc

⋅−⋅+
= , and the independent and the dependent variables. Lastly, we 

describe the expected maximum value, L. Figure 19 shows plots of s-curve with L values 

of 120, 100, 80, 40, 10, and 5. 

 

Fig. 19. S-curve with various expected maximum, L, values 

We can see that the effect of the expected maximum value of the s-curve is the end result 

of the cycle; its stabilization appoint is at the expected maximum value. 

E. Fitting Data Using S-curves and Straight Lines  

By analyzing collected artifacts through the s-curve perspective, each fitted artifact 

record contains the readiness and generation parameters that describe two important 
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characteristics of how a software team generates software artifacts (thus towards 

successful project completion) during a software project, namely readiness and how 

quick. It would be interesting to investigate the relationship between the multiple 

readiness parameters amongst the artifacts, for instance. In addition, explaining the facts 

of a software project (the collected artifacts) through the s-curve perspective provides a 

more systematic and measurable foundation for software artifact tracking, measurement, 

and analysis.   

Figure 20 displays the expected s-curves for a project following the waterfall 

development method. 

 

 
 

Fig. 20. S-curves fitted to idealized waterfall artifacts 

We note the sequential placement of the S-curves along the timeline represents the 

requirement, design, development, and testing artifacts. The readiness and generation 

parameters for these idealized phases are listed in Table 4: 
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Table 4. S-curve Parameter Values for Waterfall Artifacts 

 Requirement Design Development Problem 
readiness 0.29 9193 1127509 305845 
generation 0.079 0.21 0.22 0.12 

 

After putting the artifact data into the NPAG format, we investigate graphical methods 

to represent the magnitude changes in the experiment. The first artifact we investigate is 

the Lines of Code, shown in Figure 21. The final size is of the project is 7,758 lines, 

generated by the 18-member team in 100 days. That amount does not include code from 

components that were used to build the system. The NPAG formatted Line of Code 

graph is shown with both linear and s-curve fit, while the pink-colored s-curve seems to 

better track the Line Of Code magnitude (as compared to a liner fit). We note that the 

factual artifact magnitude increases as a step-function, which we assert is partially driven 

by project Demonstration milestones. The straight-line liner regression is based on the 

minimization the squared of error of the magnitude points. However, the straight line fit 

does not account for the final increase of Line of Code phenomena, which is quite 

common. However the s-curve seems to fit the data better, with a slow rise at the 

beginning and a faster generation following the Lines of Code count. 
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Fig. 21. NPAG format line of code with s-curve and linear fit 

Figure 22 illustrates the characteristic step-function pattern common to File 

Count artifacts. It indicates the total number of the files needed to meet the application 

requirement. Once again, the pink s-curve seems to reflect the behavior the artifact’s 

step-function behavior, while the straight line fit seems to indicate that there is continual 

generation of the number of files. From an experienced software engineering point of 

view, the s-curve definitely reflects the dynamics of the project activities that resulted in 

the step-wise file count record. 
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Fig. 22. File count with s-curve and linear fitting 

Figure 24 is a record of the Issue Count, defined as a record of issues that arise 

during the development process; it forms a pattern typical of a team that generate most 

of their files as the end of a project nears, indicative of ‘scrambling’ to meet the final 

project demonstration milestone. Interestingly, the fitted, pink s-curve did not reach the 

100 percent mark at the end of the project period. This seems to indicate that this artifact  

was not completed/fully mature at the end of the project; hence, more time was 

necessary for the s-curve to reach its project final value. Notable is the fact that the Issue 

Count is not a monotonically increasing curve, and the final issue count did drop to 50 

percent of the maximum value. With this as a possible cause of the un-completed s-

curve, it did not reach the 100 (maximum) artifact magnitude.  
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Fig. 23. Issue count with s-curve and linear fitting 

Design Object, Figure 24, in this project indicates the number of UML-style (and 

any other) artifacts that are design-oriented [27]; an example is a graph of relational 

tables that is a common pre-curser to database table implementation. For a team using 

UML-styled graphs, Use Cases, Sequence Diagram, Activity Diagram, and Object 

Diagram, each is counted individually and added as a Design Object artifact. This two-

step pattern was visible about one-third of the way into the project’s timeline, seeming to 

indicate that the team took time to design, and that all design objects were created in a 

single session. This could be because the team was on a strict schedule that does not 

allow for the designing process to be completed throughout the project; however, this is 

a count of the number of Design objects, which is a more detailed investigation into the 

design objects that might give further indication of the detailed-dynamics of the design 

process. Of note again is the clear superiority of using s-curve to fit a step-function when 

compare to the straight line fit.  



www.manaraa.com

 54

 

Fig. 24. Design object count with s-curve and linear fitting 

Figure 25 shows the operand count -- programming variables that have been used 

in an application -- from the experiment. Variables are used to represent physical world 

objects or concepts. They can also be used to represent objects within the software 

system. For example, if an array is used to represent a sequence of transactions that have 

taken place in a single day. That array is used to represent external reality. A developer 

can also use an additional array to organize the details of the past week. In this case we 

have two operands: one represents an external item and another is used for internal 

organization. The graph shows generation in array magnitude at latter part of the project; 

the s-curve is clearly a better representation of this fact than a line derived form a 

regression.  
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Fig. 25. Operand count with s-curve and linear fitting 

Figure 26 shows the Operator Count artifact, where operators are used to 

manipulate data objects (operands). The number of operators indicate the extent of the 

data transformation in an application. However, this research focuses on the behavior of 

the operator magnitude by putting it into the standard NPAG format. We note a similar 

increase in magnitude towards the end of the project time. When considering the 

differences between the estimation and the actual completion as a measurement of fit, 

the s-curve fitting is a better fit than straight line when estimating Operator Count. 
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Fig. 26. File count with s-curve and linear fitting 

‘Requirement’ is a higher conceptual object along the SETA (Software 

Engineering Transformation Axis), Figure 27. The graph below indicates a continual 

generation of the Requirement Count artifact along the time axis, although significant 

amount of requirements have been created (over 50 percent) at the project’s half-way 

point. We note that the number of requirements continue to grow, in a step-wise 

function, as the project progresses. This is a reasonable phenomena, especially 

considering that higher concept Requirements need to be clarified during the 

development activity and clarification adds more structure and qualification (which 

necessarily implies the use of more words). 
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Fig. 27. Requirement count with s-curve and linear fitting 

Figure 28 shows the database-related artifact count, referenced as Table Count. 

The experiment project created the database tables about one third of the way into the 

project; at this point, there seems to be a couple of incident results in the change of the 

number of database tables, but the overall size of them is stable throughout most of the 

project. In this artifact, the s-curve traces the step-wise increase of the database table; the 

increase and stabilization of the s-curve correspond to the artifact magnitude. Once 

again, the linear regression seems to indicate that the team was ready to create the 

database tables before the beginning of the project; this is a perfect example linear 

limitations – a line has difficulty in summarizing step-wise increments of artifact 

magnitude.   
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Fig. 28. Table count with s-curve and linear fitting 

The Cases Passed count, Figure 29, indicates that the tests are not being done at 

the beginning of the project, but rather that they are completed at once, late in the 

project. This can be justified if the testing is system integration test. However, the end 

point of the fitted s-curve fit did not reach the 100 percent mark at the end of the project. 

Contrary to the Issue Count artifact, there isn’t a decrease in the Test Case Passed count 

to explain the final low ending point; the conclusion drawn form this is “The end point 

of the s-curve of the Test Case Passed artifact did not reach the 100 percent mark 

indicates either the starting time of Test Case Passed is late, or alternatively, the project 

ended too early.”  Instead of actually starting date at day 84, Figure 30 shows the ending 

of the s-curve reached 100 percent at day 74. 
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Fig. 29. Test cases passed count with s-curve and linear fitting 

 

Fig. 30. Test cases passed count with hypothetical earlier starting date 

The Unique Operands and Unique Operator graphs, Figures 31 and 32, show that 

s-curves are good representations of software artifact generation. Specifically, the figure 

indicates about 10 percent of the eventual operands were created around one third of 
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way into the project and new operands are continuously being created throughout the 

project. This can be an indicator that the scope of the project is continuously expanding 

to cover new requirements, or this can indicate that a project has high complexity and 

more operands are being created in order to represent the domain more clearly. 

 

Fig. 31. Unique operands count with s-curve and linear fitting 

 

Fig. 32. Unique operators count with s-curve and linear fitting 
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F. Compare S-curve Fit to Straight Line Fit 

Table 5 compares the estimated values to actual values for both s-curves and a liner fit. 

The results (square root of the square the difference between the model and the actual 

value) show that the s-curve fits better in 8 out of 11 cases. The deviation value is the 

sum of the absolute daily differences between the fitted curve and the actual value. 

Table 5. Compare of S-curve and Linear Performance 

Measurement S-curve deviation  Linear deviation  
Requirement Count 2310  1102 X 
Design objects 823.2 X 2258  
Test Cases 994.2 X 2383  
Lines of Code 808.9 X 1328  
File Count 1862  1066 X 
Issue Count 1262 X 2186  
Unique Operator Count 1634  915.8 X 
Unique Operand Count 930.1 X 1180  
Operator Count 667.4 X 1340  
Operand Count 687.7 X 1321  
Database Table Count 777.5 X 2371  

 

G. Describing Experiment Data Parameters  

The experiment NPAG (Normalized Proportion Artifact Graph) contains 10 artifact 

magnitude records and has also been subjected to fitting methods. We propose that, 

using this normalized format as a common foundation for the operational control and 

also for the visual and analytical investigation of software project artifacts, the result is 

like that displayed in Figure 12 on page 41. Two parameters that describe a straight line 

fit is the slope and intercept btmc +⋅= , m and t in the equation respectively. The 
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intercept is where the equation cross the vertical axis. Since our focus in on the behavior 

of artifacts along the time dimension of the graph, we focus on the horizontal 

interception that is defined as 
m
b−  where 0=c . We interpret the slope as an indicator of 

generation and change to the artifact and the t-intercept as an indicator of the beginning 

of the artifact creation. We note that there is not a strong visual correspondence between 

NPAG, Fig. 33, and Fig. 34, especially the indication of step-wise increment of the 

software artifacts. However, the straight line from the linear regression does give a 

factual perspective of the artifacts based on the readiness and the generation parameters. 

 

 

Fig. 33. Experimental result in NPAG format 
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Fig. 34. Linear representation of artifact magnitude 

In NPAG, the Database table artifact (purple color) and the Unique Operand 

(pink color) plots are significantly different from that displayed in Figure 17. The 

Database tables have been created at an early stage in the development period, while 

Unique Operand grows more slowly, only to explode at the end of the project timeline. 

This distinction is not immediately apparent when all artifacts are graphed using straight 

lines, as in Figure 34. However, upon closer inspection the straight (purple) Database 

Table Count is above the straight (pink) Unique Operand line; this confirms that 

Database Table Count artifact does start earlier than the Unique Operand line. This 

distinction is apparent by comparing the parameters values in Table 6. 
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Table 6. Linear Regression Parameters of Experiment Normalized Proportion 
Attribute Graph (NPAG) 

 
 Requirements Case Design LOC Files Issues 
Readiness 9.121 30.38 2.833 27.58 5.674 28.14 
Generation 1.231 0.8459 1.363 0.6019 0.9823 0.9424 

 
 Unique 

operators
Unique 
operands

Operators Operands Tables 
 

Readiness - 0.6571 23.23 28.47 28.20 - 6.155 
generation 1.045 0.8154 0.5932 0.6065 1.234 

 

The s-curves and straight lines are described by parameters of an equation that 

quantitatively summarizes the data points being graphed. Each s-curve has readiness and 

a generation parameters, and a straight line has slope and a time-intercept parameters.  

Below are the experiment artifacts using liner fit and also using s-curve fit; it seems that 

s-curves, as shown in Figure 35, give a more realistic graphical representation of when 

and how the magnitude change along time than liner fitted lines. 

 

Fig. 35. S-curves of normalized experiment artifacts 

The s-curves’ corresponding readiness and generation values are listed in Table 7: 
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Table 7. S-curve Parameters of Experiment NPAG 
 

 Requirements Case Design LOC Files Issues 
readiness 12160 239500 2443 321200 58280 27330 
generation 0.1480 0.1350 0.1932 0.1568 0.1692 0.1103 

 
 Unique 

operators
Unique 
operands

Operators Operands Tables 
 

readiness 988.4 57280 239300 348600 211.9 
generation 0.1235 0.1472 0.1494 0.1558 0.1928 

We have fitted both s-curves, 
)exp(1 tgr

Lc
⋅−⋅+

= , and straight lines, btmc +⋅= , to 

NPAG. The results are two graphs and four parameters. The two parameters that 

describe the straight line fit are readiness, r, and generation, g, where smaller readiness 

indicates earlier start of the artifact building activity and larger generation means faster 

creation of artifacts. Similarly, the two parameters that describe the s-curves are also 

readiness, 
m
b− , and generation, m.  We present a sorted data table below and follow 

with analysis of the sorted data. 

 

Table 8. Artifacts Sorted According to Graph Parameters 
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Table 8 lists the eleven sorted artifacts, according to the four graph parameters. 

The column labeled ‘l ready’ stands for liner fit readiness parameter. The column labeled 

‘l grow’ stands for liner fit generation parameter. The labels ‘S ready’ and ‘S grow’ 

correspond to s-curve readiness parameter and s-curve generation parameter 

respectively. These parameters have been sorted so more desirable values are closer to 

the bottom of the table. The general idea of better is: 1) starting early in the project, and 

2) creating artifacts quicker.  

The first column lists artifacts sorted by linear readiness values. We note that the 

Table Count artifact has the best value (-6.155). The third column lists the sorted linear 

(fit) generation values with the Design Count as the best artifact with a parameter value 

of 1.363. The third fifth column lists sorted artifacts according to the s-curve readiness 

values, with Table Count as the best artifact with a value of 211.9. Lastly, in column 

seven are artifacts sorted according to the s-curve generation parameter; in this, the 

Design artifact count is at the top, with a value of 0.1932. The horizon line through the 

table is a 50 percent demarcation that separates the artifacts into a better performing 

group from the average performing group. For example, the better group artifacts would 

have started earlier in the project and grow at a faster pace. 

We have shown in an earlier chapter that the s-curve visually fits better than 

linear regression, as in Figure 36 about the Lines of Code artifact. 
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Fig. 36. Lines of code with linear and s-curve fit 

The s-curve (pink-colored) shows the significant generation of the artifacts while 

the liner fitted straight line does not show that particular artifact characteristic. We now 

look at fitting curves to the artifact data from the parameter value point of view. Table 9 

shows artifacts that have been selected using graph parameters as the selection criteria. 

We demarcate the field with a 50 percentile line for each of the four parameters in order 

to identify artifacts above the 50 percent ranking. We note that (in blue color) the 

readiness and the generation parameters of the liner regression are the same set of 

artifacts: Tables (Development), Unique Operator (Development), Design (Design), 

Source Files (Development), and Requirement (Requirement). The phases of the 

software engineering cycle are in parenthesis after the artifact. It is interesting that the 

same set is selected by the liner regression parameters. Since the project experiment 

follows the Extreme Programming practice, it is reasonable that many of these readiness 

artifacts are from the Development phase. The pink-colored artifacts are selected by the 
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s-curve parameters. We note that only two artifacts are in common, or in agreement, by 

the readiness and the generation parameters of the s-curves, Design, and Tables. This 

indicates that Design artifacts and Tables were ready at an earlier stage of the 

development cycle than other artifacts. These artifacts’ selection by the s-curve 

generation parameter indicates that, once the artifacts started to be created by the team, 

their magnitude grew rather quickly. 

Table 9. Favorable Artifacts Selected According to Common Graph Parameters 

 

Table 10 highlights artifacts selected by the same type of parameters from both 

the straight line and the s-curve graphs; that is, one set is selected by the readiness 

parameters of the straight line and the s-curve, and the other set has been selected by the 

generation parameters of both graphs. Artifacts selected in this table are strong 

candidates for that particular type of characteristic (in which artifacts are either created 

early, or they are generated quickly). For readiness, both liner and s-curve selection 

include Tables (Development), Design (Design), and Requirement (Requirement). This 

seems to be reasonable, since Extreme Programming were used during the experiment 



www.manaraa.com

 69

and all the Requirement, Design, and Development phases are carried out in parallel. As 

for the generation characteristic -- Design (Design), Tables (Development), and Source 

Files (Development) -- artifacts were selected to indicate the quick magnitude increase. 

Specifically, the database table was developed quickly because electronic commerce 

databases have a standard pattern and, once one is familiar with it, they can be created 

quickly. The quick generation of the Source File (final count 3,541 files) could be due to 

the Component nature of the electronic application. The development team created many 

files (706 files, 20 percent of the total count) for the application from scratch; thus, the 

quick generation of the Source File count could be due to the downloading of the already 

created external component files.  

Table 10. Favorable Artifacts Selected According to Common Type of Parameters 

 

Lastly, we investigate the artifacts that are selected based on all four parameters 

of the two graphs: Table (Development) and Design (Design). Their selection indicates 

that the two have been created at an early time of the project and grew quickly as shown 

in Table 11. The necessary number and types of database tables of the Table artifact is 
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fairly constant for electronic commerce based software product, thus the creation of 

database table artifacts is a pattern that can be repeated. As for Design, its selection can 

mean that design was done early in the software life cycle, created quickly, and without 

significant addition to the Design artifact. For a well known electronic commerce 

application using well know web service technology, this is to be expected. 

Table 11. Favorable Artifacts Selected According to All Graph Parameters 

 

 

H. Foundation for Operational Software Process Measurement 

This research provides a set of quantitative facts that are derived directly from artifact 

values; the latter can be used to construct metrics [16] for software project management 

using knowledge-based software tools [50]. These numbers can be predictably 

reproduced by fitting both a s-curve and a linear graphs to a standardized formatted 

artifact value. In addition, these numbers are without human-mediated adjustment or 

organizational-specific calibration, which is an important aspect of characterizing the 
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numbers as being factual. However, team-specific calibration can be obtained for in-

process operation management. Below, we describe the quantitative values based on the 

artifact being collected )),(,),,(),,(( 1100 nn atatat L . This sequence of values will be put 

into the NPAG format so both the range of the time variable and the magnitude variable 

are in proportion [0,100]. This format can serve as a standard for the analysis of software 

artifacts of similar software projects. The experimental project was 100 days, thus 

normalizing the time values would have little consequence to data. However, 

normalizing the time values would enable comparison of projects with different time 

duration.  

For graphic representation, the normalized sequence is plotted on a 100 by 100 

grid. This is a clean stage for the simultaneous presentation of all artifact values, as 

shown by the Lines of Code Figure 37 here: 

 

Fig. 37. Artifact data plotted in the NPAG format 
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The four parameters used to describe the s-curve are:  
)exp(1 tgr

Lc
⋅−⋅+

= , and the 

liner line, btmc +⋅= , can be used as quantitative component for building artifact-

related metrics. For example, the readiness parameters of the two graphs can be 

combined as 
m
bwrwready −

⋅+⋅= 21 , where ∑= iw1 is the definition of readiness (as a 

combination of both the liner and the s-curve readiness parameters). Similarly, the 

generation parameters can also be combined as mwgwgrowth ⋅+⋅= 43 , when ∑= iw1 . 

These calculations are suggestions for future work and were not reviewed in this paper. 

The researchers would like to emphasize that all numbers used are directly derived from 

the factual recording from software tools; thus, they are grounded and can be used as 

historic factual evidence of the software engineering process that have been carried out 

during the project. 

I. In Process Software Assessment 

We give an operational procedure for the visualization and utilization of graph 

parameters [44], which we define as the readiness and generation parameters of the s-

curve. We call these parameters the NPAG parameters, which include two parameters 

from the s-curve and two parameters from liner regression.  The in-process software 

assessment [10] is composed of two steps: Bootstrapping and Assessment. Bootstrapping 

gathers the team specific parameters for each artifact and Assessment gives an indication 

of whether the team is progressing on target or behind target. First, we describe the 

bootstrapping process. Due to the constraint of the s-curve equation, 
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)exp(1 tgr
Lc

⋅−⋅+
= . Initial artifact estimates are needed. This can be acquired through 

estimation such as Line of Code artifact value estimation for object-oriented projects by 

Ronchetti [39, 43]. However, due to the wide range of artifacts involved, the author 

recommends running a Calibration Project to acquire the initial artifact values. These 

artifact values are used as the Expected Maximum in the s-curve equation during the 

second Calibration Project. Completion of the second project will generate the first set of 

the s-curve parameters: r and g. This completes the bootstrapping step. 

After the bootstrapping procedure, we have a set of s-curve parameter values for 

each artifact. During a real project, we use the rearranged s-curve equation 

))exp(1( tgrcL ⋅−⋅+⋅=  for in-process assessment of the generation behavior of the 

particular artifact. Specifically, if 100))exp(1( ≥⋅−⋅+⋅ tgrc , then the artifact is being 

created as expected. On the other hand, if the value is less than 100, then the particular 

artifact at that time is being created at a slower pace than expected. The managers can 

use that data as a control value [13]. For example, perhaps use a 10 percent envelop 

around the expected 100 value. Figure 38 is a more detailed operational procedure: 
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Fig. 38. Algorithm using NPAG measurement as process control variable 

 

J. Conclusion  

A display format called the Normal Proportion Artifact Graph (NPAG) was explained 

and used to display experimental software project artifact data. This eliminates the Unit 

Collision and Scaling Problem commonly encountered when displaying multi-unit 

artifacts in a common space. Two-graph methods were investigated to their display 

capability in representing the artifact data. The s-curve was found to be more fitting than 

liner fit. This can be due to the step-function nature of software project attributes. The 
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characteristic of the s-curve was described using the readiness and generation 

parameters, and the effect of those parameters on the graph shape was described. The 

readiness and the generation values were presented as possible quantitative numbers that 

describe the generation of artifact magnitude, which can be used as grounded 

quantitative values for the construction of project metrics. A novel process control 

procedure was described based on calibrated graph parameters. This procedure gives a 

easy-to-understand response for the in-process control of multiple artifact generation 

processes. 
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CHAPTER V 

 

CONCLUSION AND FUTURE WORK 

 Eleven artifacts that span the software engineering life cycle were collected from a 

software engineering project experiment and analyzed. The number of artifact instances 

created by software engineering activities were plotted in a normalized graph format and 

fitted using both s-curves and also straight-lines. The artifact values were formatted into 

the Normal Proportion Artifact Graph (NPAG) format, which the author believes should 

become a standard for displaying multiple type of artifact in a single display without 

either Unit Collision nor Scaling Problem. This recommendation is based on the 

observation of the step-wise generation pattern of artifact instances; that after identifying 

s-curves as a reasonably superior graphical abstractions of the step-wise artifact values.  

This research defines and described readiness and generation parameters for the 

experimental data collected based on the s-curve model. The parameter values are 

grounded in quantitative summarization of software engineering activities, carried out 

during the experiment and the operational level of software engineering activity; that is, 

focusing on the software engineering processes that generates artifacts. 

Based on the proposed NPAG format and the NPAG parameters that characterize 

software artifact generation, these ground parameter values can be valuable in modeling 

a team’s artifact generation capability. For example, the readiness parameter may 

indicate the development team’s process maturity level, as in the ability to generate 

artifact as planned. The growth parameter might indicate the experience or a team based 
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on the assumption that experienced team means quicker generation of artifacts. There are 

still interesting questions that should be investigated: 

 What is the meaning when a fitted s-curve does not reach the final artifact value? 

 What is the meaning when a fitted s-curve starts above the 0 percent mark at time 

0? 

 What is the effectiveness in using s-curve parameters as process control variable 

for operation-level software engineering processes? 

These graph fitting techniques help to predict the timing and amount of resources used 

throughout an Extreme Programming project. Since significant software resources are 

devoted to the maintenance phase of the software life cycle [30, 31, 32], it is informative 

to investigate the effectiveness in the application of s-curve control variable to manage 

the maintenance phase of the software life cycle. 

The experiment used to collect data was conducted over a 100-day period. Future 

research should address projects of different lengths. As Putnam has observed on 

software sizing, combination of sizing patterns are, in themselves, a larger version of the 

pattern [38] (in this case, Raleigh Curves). It would also be interesting to investigate the 

applicability of the s-curve fitting to a combination of software projects.   
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APPENDIX A 

GLOSSARY OF TERMINOLOGY 

 

A. Introduction 

In this section, terms are defined. Each is listed entirely in capital letters, then followed 

by a corresponding definition. All terms are used in the context of software engineering 

and of software project; contextual support of many terms can be invoked by either 

precede or follow the term with the words ‘software project’. The reading of the 

definition of a term proceed as “The definition of a <the specific term> is,” followed by 

the definition of the term. Additional definitions can be found in: 

1. IEEE (Institute of Electrical and Electronics Engineers) Standard Glossary of 

Software Engineering Terminology, IEEE Std 610.12-1990. 

2. Unified Modeling Language (UML) v2.1.1. 

3. PAMPA Knowledge Base 

All terms used in this dissertation intent to be consistent with these sources. However, 

the main purpose of this Glossary is to function as a supporting resource for this 

dissertation; thus, definitions herein can be different than a term’s generally definition. 

Terms that are unchanged from the Standard Glossary are indicated with a star (*) 

symbol. 

Due to the counting nature of this research, it is necessary to take additional time 

to distinguish between an abstraction and an instance. We define the description of items 
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as CLASS and the actual item as INSTANCE. For example, the class 

SOFTWARE_ENGINEER describes software engineers in general, while an instance of 

that class named ‘Johnny Rocket’ is a specific software engineer. Each class has an 

attribute that indicates the number of class instances in existence. The manifestation of a 

class needs not be physical. For example, one’s thinking to use ‘Agile software life 

cycle’ is an acceptable instance of the ‘Software Project Process Ideas’ class. 

B. Glossary 

ABSTRACTION LEVEL. An attribute of a software instance that contains a value 

indicating the closeness of a software instance to machine code. Machine code has 

the lowest abstraction value. 

ABSTRACT CLASS. A class that cannot be instantiated. 

ACTIVITY. A PAMPA class that is composed of an initial milestone and a final 

milestone. 

AGGREGATION. see aggregation ordinary. 

AGGREGATION COMPOSITE. of class. A whole/part relationship.  “a strong form of 

aggregation that requires a part instance be included in at most one composite at a 

time. If a composite is deleted, all of its parts are normally deleted with it. Note that 

a part can (where allowed) be removed from a composite before the composite is 

deleted, and thus not be deleted as part of the composite.”  An example is shown 

below: 
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AGGREGATION ORDINARY. An example of an aggregation where the Testing Team 

class owns Software Engineers is diagrammatically shown below using the UML 

syntax 

 

 

ARTIFACT. A PAMPA knowledge base class. An artifact is any object that is created 

and maintained by software tools. This research expands the definition of artifacts 

from objects maintained by direct software tools to include objects maintained by 

in-direct software tools. For example, a project plan is an artifact created by a 

project management software tool, issues, and problem reports are artifacts; design 

objects are also artifacts. 

ATTRIBUTE. A characteristic of an object; for example, the object’s color, size, or 

type. Some characteristics can be measurable, countable, or comparable. 

CANONICAL ATTRIBUTE PROJECT SET (CAPS). CAPS is a set of software project 

attributes that can be used for retrospective project review to improve software 

processes or for team capability assessment. 
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CLASS. of unified modeling language infrastructure [36]. An element of the M2 layer of 

the Four-layer Metamodel Hierarchy where UML is defined. Instantiation of class 

from the M2 layer to the user model M1 layer results in a representation of a set of 

possible real-world elements. 

CLASS ABSTRACT. See abstract class. 

COMPLETION. A milestone.   

COMPOSITION. class. A class that include other classes. Instance of the included class 

has only a single object as its owner. When the owner object is deleted, the instance 

is also deleted. 

CRITERIA. A question that can result in a ‘Yes’ or a ‘No’ answer. 

DEFECT. An set of incorrect instructions in the source code. 

DEMONSTRATION. Running of executables of an in-progress software project for 

informative purpose.  

EXECUTABLE. see object code. 

FOUR-LAYER METAMODEL HIERARCHY. see UML. FOUR-LAYER 

METAMODEL HIERARCHY. 

GENERATION. A graph parameter that indicates the growth rate of the dependent 

variable. For example, the graph below contains six plots with different generation 

parameter values. The different rate at which the vertical value increases is due to 

the different generation parameter values. 
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GROUNDED INSTANCE. An element of the M0 layer of Four-Layer Metamodel 

Hierarchy. 

INSTANCE. of a class. An occurrence of a class. Each instance has the following 

attribute: instance name. 

INSTANCE COUNT. CLASS. An attribute of a model that contains the number of 

instances in the M0 Four-Layer Metamodel Hierarchy.  

ISSUE. Deviation from requirement or generally accepted behavior that causes material 

operation inefficiency. Issues usually occur during software operation or testing. In 

this particular experiment, software process-related issues are also recorded as 

issues. 

METAMODEL (*) [36]. M2 layer of the Four-Layer Metamodel Hierarchy. For 

example, the Unified Modeling Language (UML) is a metamodel. 

MODEL. equation. A mathematical equation that maps values from one set of values to 

another set of values.   
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MODEL [36]. graphic user. Define languages that describe semantic domains, i.e., to 

allow users to represent a wide variety of problem domains.   

NPAG (Normalized Proportion Artifact Graph). A display of artifact records, wherein 

both the time axis and the vertical axis are measured from 0 through 100. 

OBJECT CODE. A software instance in a format that can be recognized by a computing 

machine. A software instance of the lowest abstraction value.  

PAMPA. An acronym for Project Attribute Monitoring and Prediction Associate. A 

computing system that monitors and predicts software project attributes. It is 

composed of a knowledge base and an expert system.  

PAMPA KNOWLEDGE BASE. A UML-based user model of software project that is 

composed of 35 classes that define the Plan, Supplier, Organization, Software 

Product, and Customer areas of a software project and their relationships.   

PARAMETERS. Fixed value in a mapping function between two set of numbers. 

PROCESS. A PAMPA class that is composed of activities. (1) A sequence of steps 

performed for a given purpose; for example, the software development process. (2) 

An executable unit managed by an operating system scheduler. See also: task; job. 

(3) To perform operations on data. 

READINESS. A graph parameter that indicates the starting point of significant 

dependent variable growth. 

REQUIREMENT*. (1) A condition or capability needed by a user to solve a problem or 

achieve an objective. (2) A condition or capability that must be met or possessed by 

a system or system component to satisfy a contract, standard, specification, or other 
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formally imposed documents. (3) A documented representation of a condition or 

capability, as in (1) or (2). See also: design requirement; functional requirement; 

implementation requirement; interface requirement; performance requirement; 

physical requirement.  

S-Curve. An equation that maps an independent variable that represents time to a 

dependent variable. The equation embodies the description of 3 stages: slow initial 

growth of dependent variable, followed by rapid growth, and finally by slow 

growth. An s-curve equation is defined as 
)exp(1 tgr

Lc
⋅−⋅+

= , where t is the 

independent variable and c is the dependent variable, g and r are parameters, and L 

is a constant. A possible usage of the equation is to fit a sequence of t and c pairs to 

derive the g and r parameters using linear regression fitting process. An S-curve can 

be used to describe adaptation of technology with the pass of time. In our context, 

we use an s-curve to describe the evolution of a software artifact. 

SOFTWARE ENGINEERING TOOL. see Software Tool. 

SOFTWARE LIFE CYCLE. The period of time that begins when a software product is 

conceived and ends when the software is no longer available for use. The software 

life cycle typically includes a concept phase, requirements phase, design phase, 

implementation phase, test phase, installation and checkout phase, operation and 

maintenance phase, and, sometimes, retirement phase. Note: These phases may 

overlap or be performed iteratively. 
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SOFTWARE PROJECT. A set of classes and relationships defined by PAMPA (Project 

Attribute Monitoring and Prediction Associate). 

STORY. A text description that conveys the software requirement from the users’ point 

of view. Each story is stated in such wording so it can be validated. Story is a 

requirement document that is used in the Extreme Programming software 

development process. 

UML. Unified Modeling Language. a visual modeling language for specifying, 

constructing, and documenting the artifacts of systems. It is a general-purpose 

modeling language that can be used with all object and component methods, and 

that can be applied to all application domains (e.g., health, finance, telecom, 

aerospace) and implementation platforms (e.g., J2EE, .NET). 

http://www.omg.org/docs/formal/07-02-04.pdf 

UML. FOUR-LAYER METAMODEL HIERARCHY. An Object Management Group 

(OMG) description of graphical modeling language. The detailed description is in 

reference [36].  The four layers are named M3/meta-metamodel, M2/metamodel, 

M1/model, M0/run-time instance. The Unified Modeling Language (UML) is an M2 

layer element, software architect and software designers instantiates UML to create 

models in the M1 layer, and M0 layer contains run-time instances of M1 model. 

Below is an example of the Four-level Metamodel Hierarchy [36]: 
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UNIT. MEASUREMENT. A set quantity of an instance attribute that has a name and is 

generally known. The set quantity is used to describe the attribute. Defined in the 

context of four items: 1) an instance, 2) an attribute, 3) a quantity with respect to the 

attribute, and 4) a name. Example 1, after measuring the diagonal length of a laptop 

screen, one writes down 23. To answer the question ‘What is the unit of 23?’, one 

states “The instance being measured is a laptop screen, the attribute being measured 

is length, the quantity is 23, and the name of the unit is ‘inches’”. Example 2, after 

counting stars in the sky, one writes down 230. To answer the question ‘What is the 

unit of 230?’, one states “No instance is being measured, instances are being 

counted. No attribute is being measured. The quantity is 230, and the name of the 

unit is ‘count’”. Example 3, after learning that the Darkness of a Night can be 

defined by the number of viewable stars, one counted the number of stars in a sky 

and wrote down 230. To answer the question ‘What is the unit of 230?’, one states 

“The instance being measured is the sky, the attribute being measured is ‘Darkness 
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of a Night’, the quantity is 230, and the name of the unit is ‘star’” We note that 

while quantity and the physical act of counting for example 2 and example 3 are the 

same. The question “What is the unit of 230?” warrants different answers because of 

difference in context. 
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APPENDIX B 

RECORDED ARTIFACTS 

Below is the set of artifact data retrieved from a successful software project. The 

project produced a successfully electronic commerce web site named Purchase 

Tracker. This table only gives the final magnitude of each of the artifact. The 

complete record includes the sequence of the artifact magnitude collect during each 

day of the project. 

 
Measurement Lifecycle Tool Type of Tool Final Size 

Requirement 
Count 

Requirement Rational 
RequisitPro 

Requirement tool 74 Tasks 

Design objects Design Rational 
Software 
Architect 

Design 7 Use cases, 
6 Interaction 
Diagram, 
1 Database 
Diagram. 

Test Cases Test Excel Testing 30 Test Cases, 
29 Completed 
Test Cases. 

Lines of Code Development Subversion Configuration 
management tool 

7758 Lines of 
Code 

File Count Development, 
Maintenance 

Subversion Configuration 
management tool 

3541 Files 

Issue Count Development, 
Maintenance 

ClearQuest Issue Tracking 
Tool 

27 Closed 
Issues, 
38 Ending 
Issues. 

Unique Operator 
Count 

Development, 
Maintenance 

Subversion Configuration 
management tool 

23 Unique 
Operators 

Unique Operand 
Count 

Development, 
Maintenance 

subversion Configuration 
management tool 

1158 Unique 
Operands 

Operator Count Development, 
Maintenance 

subversion Configuration 
management tool 

3940 Operators 

Operand Count Development, 
Maintenance 

subversion Configuration 
management tool 

6622 Operands 

Database Table 
Count 

Development, 
Maintenance 

  6 Database 
Tables. 
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APPENDIX C 

EXPERIMENT APPLICATION USER MANUAL 

Below is part of the User Manual from the Application Project of the experiment. The 

application team carried through the extreme programming practice and developed a full 

function electronic commerce web application that manages a store’s inventory. The 

system’s name is Purchase Tracker. 
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APPENDIX D 

DATA FITTING SAMPLE 

Below is a sample of the artifact values collected during the experiment. 
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VITA 

Name 

 Norman K. Ma 

Education 

2007, Ph.D. in Computer Science, Texas A&M University at College Station,    
Texas 

2000, M.B.A., Southern Methodist University, Dallas, Texas 
1990, M.S. in Computer Science, University of Tennessee at Knoxville, Tennessee 
1986, B.S. in Computer Science, University of Illinois at Urbana-Champaign, 

Illinois 
 
Professional Experience 
 

2007, System Engineer, The MITRE, Bedford, Massachusetts 
2003, Teaching Assistant, Texas A&M University at College Station, Texas 
2002, Software Engineer, IntelliSoft Corporation, Plano, Texas 
1995, Software Engineer, Raytheon Systems Company, McKinney, Texas 
1992, Software Engineer, Lockheed-Martin, Glendale, California 
1986, Software Engineer, Texas Instruments, Johnson City, Tennessee 
 

Contact 
 

Norman K. Ma 
101 Great Rd #108 
Bedford, MA 01730 
 
Department of Computer Science 
Texas A&M University 
TAMU 3112 
College Station, TX 77843-3112 
 
www.web2076.net 
 

 

 

 


