
www.manaraa.com

MODELING SOFTWARE ARTIFACT COUNT ATTRIBUTE WITH S-CURVES

A Dissertation

by

NORMAN K. MA

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

December 2007

Major Subject: Computer Science

www.manaraa.com

 ii

MODELING SOFTWARE ARTIFACT COUNT ATTRIBUTE WITH S-CURVES

A Dissertation

by

NORMAN K. MA

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Approved by:

Co-Chairs of Committee, Dick B. Simmons
 William M. Lively
Committee Members, Robert J. Hall
 Udo W. Pooch
Head of Department, Valerie E. Taylor

December 2007

Major Subject: Computer Science

www.manaraa.com

 iii

ABSTRACT

Modeling Software Artifact Count Attribute with S-Curves.

(December 2007)

Norman K. Ma, B.S., University of Illinois at Urbana-Champaign;

M.S., University of Tennessee at Knoxville;

M.B.A., Southern Methodist University

Co-Chairs of Advisory Committee: Dr. Dick B. Simmons
 Dr. William M. Lively

The estimation of software project attributes, such as size, is important for software

project resource planning and process control. However, research regarding software

attribute modeling, such as size, effort, and cost, are high-level and static in nature. This

research defines a new operation-level software project attribute that describes the

operational characteristic of a software project. The result is a measurement based on the

s-curve parameter that can be used as a control variable for software project

management. This result is derived from modeling the count of artifact instances created

by the software engineering process, which are stored by software tools. Because of the

orthogonal origin of this attribute in regard to traditional static estimators, this s-curve

based software attribute can function as an additional indicator of software project

activities and also as a quantitative metric for assessing development team capability.

www.manaraa.com

 iv

DEDICATION

to my grandparents and my parents, David and Ching.

www.manaraa.com

 v

ACKNOWLEDGMENTS

I am grateful to Dr. Dick Bradford Simmons and Dr. William McCain Lively for their

consistent support and guidance during my Ph.D. education. Through discussions, I have

gained understanding of the Ph.D. Standard, through apprenticeship, I have learned the

Ph.D. Practice, and through participation in the activities of the Software Process

Improvement Laboratory at the Texas A&M University, I am becoming a better person.

I thank Dr. Udo W. Pooch and Dr. Robert J. Hall for their patience, understanding, and

empathy as members of my Ph. D. committee. Without the dedication, experience, and

commitment of each of the four members of my Ph.D. community, I would have been

satisfied with a much narrower world view, a much smaller knowledge, and a much

weaker spirit.

I also remember and thank my M.S. committee at the University of Tennessee at

Knoxville: Dr. Michael D. Vose, Dr. Gunnar E. Liepins, and Dr. David C. Mutchler for

helping me to establish a solid research foundation and for asking me “Norman, you

know we are all just searching for the Truth, right?” I believe I have finally understood

the meaning of that question.

Lastly, I sincerely thank the members of the Department of Computer Science at

the Texas A&M University and our Aggie Community for an excellent learning

environment in the great state of Texas.

www.manaraa.com

 vi

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION …………………………………………………. 1

 A. Software Artifact Attribute Magnitude ………………………… 7
 B. Organization of the Dissertation ……………………………….. 9

II OPERATIONAL LEVEL SOFTWARE ENGINEERING
 ACTIVITIES………………………………………………………... 11

 A. Introduction ……………………………………………………. 11
 B. Software Artifact Description …………………………………. 16
 C. Conclusion ……………………………………………………... 18

III COLLECTING PROJECT DATA …………………………………. 19

 A. Introduction ……………………………………………………. 19
 B. Experiment Description ………………………………………... 19
 C. Application Description ………………………………………... 21
 D. Software Tools Description ……………………………………. 21
 E. Process Description ……………………………………………. 22
 F. Software Artifact Source ………………………………………. 24
 G. Conclusion ……………………………………………………… 31

IV MEASURE AND DATA DESCRIPTION ………………………. 32

 A. Introduction …………………………………………………… 32
 B. Unit Description ………………………………………………. 33
 C. Normal Proportion Artifact Graph (NPAG) Format ………….. 34
 D. S-curve and Straight Line Description .. 41
 1. The Readiness Parameter …………………………………. 44
 2. The Generation Parameter ………………………………… 46
 3. The S-curve Constant …………………………………….. 48
 E. Fitting Data Using S-curves and Straight Lines …………………. 48
 F. Compare S-curve Fit to Straight Line Fit ………………………. 61
 G. Describing Experiment Data Parameters ………………………… 61
 H. Foundation for Operational Software Process Measurement …… 70
 I. In Process Software Assessment …...………………………….... 72
 J. Conclusion ………………………...……………………………… 74

www.manaraa.com

 vii

CHAPTER Page

V CONCLUSION AND FUTURE WORK …………………………… 76

REFERENCES ……………………………………………………………………… 78

APPENDIX A GLOSSARY OF TERMINOLOGY ……………………………….. 85

APPENDIX B RECORDED ARTIFACTS …... 95

APPENDIX C EXPERIMENT APPLICATION USER MANUAL …….………… 96

APPENDIX D DATA FITTING SAMPLE ……………...………………………… 104

VITA ………………………………………………………………………………… 105

www.manaraa.com

 viii

LIST OF TABLES

TABLE Page

1 Artifact and Artifact Unit ………………………………………………… 13

2 Software Engineering Experiment Team Processes ……………………… 22

3 Description of Artifacts’ Units ……………………………………………. 33

4 S-curve Parameter Values for Ideal Waterfall Artifacts …………………… 50

5 Compare of S-curve and Linear Performance …………………………… 61

6 Linear Regression Parameters of Experiment Normalized Proportion
 Attribute Graph (NPAG) ………………………………………………… 64

7 S-curve Parameters of Experiment NPAG ………………………………. 65

8 Artifacts Sorted According to Graph Parameters ………………………… 65

9 Favorable Artifacts Selected According to Common Graph Parameters … 68

10 Favorable Artifacts Selected According to Common Type of Parameters …. 69

11 Favorable Artifacts Selected According to All Graph Parameters …………. 70

www.manaraa.com

 ix

LIST OF FIGURES

FIGURE Page

1 Example of OMG’s four-layer metamodel hierarchy …………………. 1

2 Two instances of the project class ………………………………………. 2

3 Two instances of the project list class …………………………………... 4

4 PAMPA classes ………………………………………………………….. 4

5 Type of artifact classes …………………………………………………. 5

6 Instantiated artifact objects ……………………………………………… 6

7 Project Attribute Monitoring and Prediction Associate (PAMPA) ……… 14

8 Experiment team organization ………………………..……………….. 20

9 Raw artifact values displayed in a single graph with unit collision and
 scaling problems ………………………………………………………… 35

10 Normalized artifact magnitudes sample 1 ……………………………….. 37

11 Normalized artifact magnitudes sample 2 ……………………………….. 39

12 NPAG data representation and graph ……………………………………. 41

13 Fitting an s-curve ………………………………………….…….………. 42

14 S-curves with various readiness parameter values ………………………. 43

15 S-curve and its diminishing churn …………………….…………………. 44

16 Linear graph of various intercept parameter values ……………………... 45

17 S-curves with various generator parameter values ………………………. 46

18 Linear fit with various generator parameter values ……………………… 47

19 S-curve with various expected maximum, L, values ……………………. 48

www.manaraa.com

 x

FIGURE Page

20 S-curves fitted to idealized waterfall artifacts …………………………… 49

21 NPAG format line of code with s-curve and linear fit …………………… 51

22 File count with s-curve and linear fitting ………………………………… 52

23 Issue count with s-curve and linear fitting ……………………………….. 53

24 Design object count with s-curve and linear fitting ……………………… 54

25 Operand count with s-curve and linear fitting ……………………………. 55

26 File count with s-curve and linear fitting ………………………………… 56

27 Requirement count with s-curve and linear fitting ……………………….. 57

28 Table count with s-curve and linear fitting …………………………….. 58

29 Test cases passed count with s-curve and linear fitting ……………….. 59

30 Test cases passed count with hypothetical earlier starting date …….. 59

31 Unique operands count with s-curve and linear fitting ……………….. 60

32 Unique operators count with s-curve and linear fitting ……………….. 60

33 Experimental result in NPAG format …………………………………. 62

34 Linear representation of artifact magnitude ………………………….. 63

35 S-curves of normalized experiment artifacts …………………………… 64

36 Lines of code with linear and s-curve fit ………………………………. 67

37 Artifact data plotted in the NPAG format ……………………………… 71

38 Algorithm using NPAG measurement as process control variable …… 74

www.manaraa.com

 1

CHAPTER I

INTRODUCTION

Estimation of software project attributes (such as size) is important for project resource

planning and process control. However, size, effort, and cost, do not show the dynamic

nature of the software engineering process. While concepts like ‘software project’ are

generally understood, they are not often understood in detail. Object Management

Group’s Four-layer Metamodel Hierarchy [36] utilizes a framework in order to account

for various elements of a software project before proceeding to count artifact instances.

In addition, Appendix A contains a glossary of terminology that can provide grounding

for ambiguous terms . The Four-layer Metamodel Hierarchy is graphically displayed in

Figure 1 below:

Fig. 1. Example of OMG’s four-layer metamodel hierarchy [36]

 This dissertation follows the style of IEEE Transactions on Systems, Man, and Cybernetics.

www.manaraa.com

 2

Each layer of the hierarchy defines a language that can be instantiated at the lower layer.

The most well known layers are M2 and M1, where the M2 layer defines the Unified

Modeling Language (UML) ; at layer M1, users use UML to create a particular system

called a user model. In other words, the user’s model is an instantiation of UML. Finally,

when the user model is running, instances of the elements of user model come into

existence at layer M0. It is the counting of instances at layer M0 of the PAMPA software

project user model that is the focus of this dissertation.

The UML is a de facto graphic-based modeling language for describing the

logical, process, physical, development views of a system [35]. The PAMPA knowledge

base model describes the various parts of a software project and is constructed using the

UML at layer M1. During a software project, instances of PAMPA elements are

instantiated at layer M0. From here, a ‘class attribute’ describes a characteristic of a

class, and an ‘instance attribute’ describes a characteristic of an instance. Of those

described, the model collects attributes that are measurable or countable, the definitions

of which are described in Figure 2:

Fig. 2. Two instances of the project class

www.manaraa.com

 3

The figure contains the ‘software project’ class represented by a rectangle and

two instances of the software project class, whereas the dotted rectangle contains the

attributes of the corresponding object. For the software project class, the value of the

‘type’ attribute is ‘class’, the value of the ‘name’ attribute is ‘software project’, and the

‘count’ attribute is set at a value of 2, indicating that two instances of the software

project class exist; the latter represented as circles, located just below the class. Each

instance has multiple, corresponding attributes, such as type, class, name, size, etc. For

instance, the object with the name ‘e-commerce’ has a ‘size’ attribute that contains the

number 372; furthermore, this size attribute is also measured, in units of ‘files’. The

second instance has its own set of attribute-value pairs and are listed as follows: (type -

‘instance’), (class - ‘software project’), (name - ‘flight control’), (size - 300,000 lines of

code). We note that the ‘flight control’ instance’s size attribute is measured in units of

‘lines of code’, with a quantity of 300,000. Moreover, the software project class has a

class attribute named ‘count’. That attribute has a value of 2 and is measured in the unit

of ‘software project instance’. The next section describes artifact. The focus of the above

discussion is the project class. If the discussion is about a composition [18] such as the

PAMPA project list, i.e. ProjectList, class, then two instances of the project list class can

be represented as in Figure 3:

www.manaraa.com

 4

Fig. 3. Two instances of the project list class

Figure 4 is the PAMPA knowledge base, which contains 35 classes. Both the

project list class and the project class are part of this PAMPA class diagram.

Fig. 4. PAMPA classes

www.manaraa.com

 5

We are interested in the artifact class at the lower right hand side of the graph

because artifacts are tangible results created by software engineering activities, where

Artifact is marked as a component of Subsystem, and Artifact is composed of Chunk. In

this model, artifacts are defined as project objects that are created and stored by software

tools. In this case, the PAMPA artifact class is an abstract class composed of

instantiateable classes:

Fig. 5. Type of artifact classes

Figure 5 illustrates further detail within the artifact’s three sub-classes:

requirement, design, lines of code, and attributes of the requirement class; the count

class attribute within the requirement class is zero because there are no instantiation of

objects from that class. Further detail is necessary when software projects generate

requirements, such as use cases or stories, and other types of artifacts during subsequent

phases of the software development cycle.

www.manaraa.com

 6

Fig. 6. Instantiated artifact objects

The model is interested in measuring and recording the change of the count class

attribute of the requirement class, which is graphically identified in Figure 6 with an

arrow. In this particular scenario, there are 3 use case instances, and we say:

“There are 3 requirement instances in the system. We are particularly interested

in the ‘count’ class attribute of the requirement class. The count class attribute is

measured by counting the number of requirement instances. At this time, the

count class attribute has a quantity of 3 with unit of ‘requirement instances’.”

and we represent the above statement mathematically through the following formula:

))37,(),6,(),3,((_ 21 ++= nnn tttrecordtrequiremen , which indicates that there are 3

requirement instances at time n, 6 at time n+1, and 37 at time n+2.

The focus of this research is on the trend of the ‘count’ class attribute of artifacts.

For each artifact record, both a straight line and an s-curve are used to model the

dynamic change of the count variable. To accomplish this, a format was created and will

www.manaraa.com

 7

be introduced later in the paper; its function is to focus on the growth and readiness of

the artifact count. These are two important operational-level measurements that can help

in managing software on a day-to-day basis. Finally, a procedure to manage the process

and creation of software artifacts is introduced.

In creating and introducing these measures, this dissertation has contributed to

the field by identifying artifact counts as a grounded software project management

activity measurement [29], thus creating a way to use them to both measure and to

control the artifact generation process which in turn provides detailed in-process

indicator of software engineering processes to help better managing the day-to-day

activities of software engineering projects. These has been significant increase in the

quantity of software code that are being created, both due to improving in software

technology and increase in overall software engineers. However managing software

development are still mostly at the requirement level where the day-to-day activities are

not being measured. However, the availability of s-curve parameters presented in this

dissertation can be a starting point in the more scientific management of the software

development process.

A. Software Artifact Attribute Magnitude

Software Engineering is a result-oriented endeavor executed through disciplined

processes, whereas software artifacts are essential results of software engineering.

The latter is defined as a measurable item, retrievable with computer aided software

engineering (CASE) tools; since a successful software project produces software

www.manaraa.com

 8

artifacts that meet Requirements [11], examining artifact changes during the software

life cycle can improve the production processes By which they are created. The specific

variable that this study examines is the count of artifacts; the artifact instances are

collected from all software life cycle phases, gathered by software tools.

To date, a significant amount of software research has been focused on the Point

Estimation of project attributes, such as size, defect count [56], and cost of software

products [1, 4, 7, 24, 27]; only general, loose research has been conducted regarding

production goals and estimations, especially those that are predictive, using information

artifacts at early phases of the software life cycle, such as use cases, lines of code, object

points, functional points [28], etc. A successful predictive model would make software

cost estimates more accurate, and project resource allocation more proactive.

While software engineering tools’ function is the transformation of artifacts from

high-level human minds down to structured machine code that conforms to the Software

Engineering Transformation Axis (SETA). At the more detailed end of the software

engineering activity spectrum is executable code and source files; from these,

researchers can generate detailed artifact visualizations [49, 51] retrieved from software

tools, such as a configuration management system. As an example, a succinct mid-level

software project perspective in SETA is provided by the PAMPA (Project Attribute

Monitoring and Prediction Associate) software project template [42, 52]. However,

neither the top-level attribute estimations, nor the low-level visualization techniques

yield a perspective that’s detailed enough to understand artifact generation activities

throughout the software life cycle.

www.manaraa.com

 9

Software engineering is result-oriented and, in order to achieve results, efficient

artifact creation is necessary [47]. Since this process is usually team-oriented, each team

member’s choices are important factors in determining efficiency and efficacy. To date,

no other research has sufficiently examined these choices - choices that result in

determining a project’s direction. Moreover, the path of each team member on a decision

tree splits quickly because there are so many choices and variables along the way; these

commonly include size, defect, and cost.

We assert that continual storage and measurements of artifact values during

software development can provide standardized [21, 22], quantitative values that help

guide a detailed understanding of software artifact creation activities [2]. This

dissertation achieves this by making a departure from tradition thought, in order to

present a behavior of artifact magnitudes graphed and described using both s-curves [15]

and straight lines from liner regressions. S-curves, traditionally found to be useful in

describing technology adoption behaviors [12], are also useful when describing the

magnitude of software projects; this is confirmed by our independent research. Using

data from an experiment the researchers compared the S-curve against a linear graph

approach and found the former to be superior.

B. Organization of the Dissertation

The rest of the dissertation is organized as follows. In Chapter II, operation-level

software engineering activities are defined. Chapter III presents the experiment, where

the collection of software project data is described. Chapter IV contains a description of

www.manaraa.com

 10

the measured data. Chapter V concludes the discussion by summarizing the findings and

suggesting future work.

www.manaraa.com

 11

CHAPTER II

OPERATIONAL LEVEL SOFTWARE ENGINEERING ACTIVITIES

A. Introduction

According to the Cone of Uncertainty software project description [8], the uncertainty of

the possible cost, size, and features of a software product progressively decreases along

the software construction phases, namely: initial concept, product definition, marketing

requirement, technical requirement, design, test cases, and development. Within this

process, different participants are interested in different objectives [33]. For instance,

producers are interested in profit, software engineers are interested in building a quality

product, software managers are interested in productivity and budgets [26], and users

care about the value that the software system brings to their lives [9]. Many of these

questions hinge on the estimation of software size and cost [19]. From the accounting

perspective, one asks questions such as which account to charge for “time spent on

talking with the customer” or question of fixed cost allocation. These individual

accounting decisions affect the eventually profitability of a software project. However,

existing research [5] has not addressed the lack of detailed association between software

accounts and software artifacts created during the software life cycle; tracking artifacts is

important to cost estimation because it can use the life cycle to breakdown software

costs [34, 48]. Unfortunately though, only high-level accounting information are

available to project management in most software projects. This research presents a way

www.manaraa.com

 12

to more easily track Artifacts - defined as any object that is stored by software tools. The

goal of software projects is to create executable code that satisfies requirements derived

from the original concept. The process of creating software involves many steps; to

accurately estimate costs, a model needs to individually examine these steps.

 A program starts with an object code, created by the assembler software tool;

this tool then translates assembly code to specific machine code. The source of assembly

code is run through language compilers, which then translates source code into assembly

code. Moving up the software translation axis, source code are generated either by

software engineers or by automatic program generators; these then automatic program

generators can create source code based on design document that are used by software

engineers.

Moving further up the translation axis, design documentation and specification

are created by human from requirement documents. We define all the intermediate

items that represent the original software product concept as Artifacts, including the final

machine code. We also note that these progressively more specific artifacts are created

by software tools and humans. Each type of artifact is associated with a number and a

unit, for example, a use-case type artifact might have a value of ‘7 Use Case Count’ and

a machine code type artifact might have a value of ‘5,783 Byte Count’. Specifically, the

types of artifact that have been collected are shown in Table 1:

www.manaraa.com

 13

Table 1. Artifact and Artifact Unit

Artifact Type Artifact Unit Example Artifact Value

Issue Issue Count ’12 Issue Count’

Source File Source File Count ‘3,541 Source File Count’

Line of Code Line of Code Count ‘7,758 Line of Code Count’

Design Object Design Object Count ’14 Design Object Count’

Test Case Yes Test Case Yes Count ‘29 Test Case Yes Count’

Requirement Requirement Count ’74 Requirement Count’

Database Table Database Table Count ‘7 Database Table Count’

Operand Operand Count ‘6,622 Operand Count’

Operator Operator Count ‘3,940 Operator Count’

Unique Operand Unique Operand Count ‘1,158 Unique Operand Count’

Unique Operator Unique Operator Count ’23 Unique Operator Count’

We have described the various types of software artifacts and software tools that

generate those artifacts. PAMPA (Project Attribute Monitoring and Prediction

Associate) provides a perspective on the relationship between software project objects

and a framework for the application of software processes [49]. The PAMPA perspective

is shown below:

www.manaraa.com

 14

Fig. 7. Project Attribute Monitoring and Prediction Associate (PAMPA)

The software tools at the lower-center part of Figure 7 both help the technical

personnel to create the software system and provide important project measurements for

software project management. This research focuses on the operational-level activities of

generating artifacts. Artifacts - the essential result of a software project, also include

very structured software Executables and Source Code. For example, a high-level

software engineering artifact could be a story (contains 31 words) such as:

Write a short program to verify the successful creation of a
development environment for developing C language applications,
verify the editor, compiler, and the integrated development
environment have been installed correctly.

www.manaraa.com

 15

and a partial listing of the complete transformation of the above story along the same

conceptual transformation axis to the final low-level Intel processor-based machine code

(containing 8,873 bytes):

0016540 000000 002401 000000 000570 000000 000004 000000 000002
0016560 000000 000000 002427 000000 050000 000100 237777 000000
0016600 000002 002447 000000 053537 067151 060515 067151 051103
0016660 061537 072162 000060 057537 074543 073547 067151 061537

The above example lists the extreme possibilities of an artifact.

Software projects can be defined in three-levels: Strategic, Operational, and

Tactical. The former can include deciding what to build and placement of the software

product in the market place, Tactical activities can include locating defects or building of

an executable, while the majority of the software engineering process involve

Operational activities. These include processes like artifacts translation, from general

artifacts to more specific types, then finally to executable code. The most interesting

aspect to both researchers and practitioners is the translation from a high-level concept to

concrete machine code. This involves operation-level perspective of daily activities of

generating software artifacts. These activities are usually facilitated by software tools,

such as configuration management, graphical design, issue tracking, requirement

management, etc. Recent software engineering environments, involving concurrent

wide-geographic development, Agile development [3, 6], commercial off-the-shelf

(COTS), and component engineering, also highlight the utility of software engineering

tools as a binder that unites the software engineering processes. Software engineering

tools provide situation awareness of the present software project [14, 45]; that is,

www.manaraa.com

 16

providing a managerial-level perspective of the life cycle of software artifacts through

out the requirement, testing, design, development, and maintenance phases of a software

project.

In this dissertation, a software project’s artifacts have been collected using

software engineering tools. Eleven project artifacts have been collected as part of the

Canonical Attribute Project Set (CAPS). They are Requirement Count, Lines of Code,

File Count, Issue Count, Design Objects, Test Cases, Unique Operator Count, Unique

Operand Count, Operator Count, Operand Count, and Database Table Count.

B. Software Artifact Description

Requirement Count is the number of requirements derived from Extreme Programming

stories. An Extreme Programming (XP) [37, 41] practice story gives a description of

desired system behavior. Larger more vague stories can be broken down into sub-

requirements or Use Cases. A Use Case is a specific description of a functionality

provide by the system to the user.

Design Object Count is the number of design-related artifacts generated from

the requirement. Design objects based on the Unified Modeling Language (UML)

include Use Cases, Object Diagrams, Class Diagram, Relational Database Model,

Sequence Diagram, etc.

Database Table Count is the number of database tables created to meet the

requirement. Usually each table represent a Class in the object-oriented representation.

www.manaraa.com

 17

In addition, database tables can also represent Business Processes, Conceptual Ideas, and

any other items that need to be processed by computing systems.

Lines of Code (LOC) are the lines of source code that were created by the

develop team to satisfy the requirements. In this particular study, JavaScript and JSP are

the main types of source code, which are instantiated by an Apache web server when

accessed by a web client.

File Count is the number of files that were created by the development team to

satisfy the requirements. Both external files and team-created files are involved in many

software projects. The source of external files stem mainly from the user interface,

database, and web services platforms. These include graphical user interface builders

and help files, database source files and interface files, and web server source code and

interface files.

Unique Operator Count is the number of unique operators in the source code.

Operators transformation of numbers and numerical calculations. In addition, operator

can transform strings and software objects.

Unique Operand Count is the number of unique operands in the source code.

These are mainly variables that representing numbers, text, and codified conceptual

objects.

Operator Count is the total number of operators in the source code to meet the

requirements. Operators indicate the size and variety of transformation that the software

project uses to satisfy the requirement.

www.manaraa.com

 18

Operand Count is the total number of operands in the source code created to

meet the requirements. Operand count indicates in general the scope and size of facts

that need to be represented, managed, and transformed by the software product to satisfy

the requirements.

Issue Count is the number of report that shows deviation from requirements or

expected software behavior that significantly affect the efficiency of the interaction

between the software system and the user. In addition, issues also describe software

development situations that affect the effective operation of the development process.

An example of development process-related issues include: development environment

readiness and efficiency. While readiness and efficiency are not quantitative, reports of

these situations are countable.

C. Conclusion

In this chapter, we have described the activities within the software engineering process

that generate artifacts; in addition, artifacts from the software life cycle phases during

the experiment were described and defined. Following, terms were introduced in order to

set the context of the software project experiment. A brief description of the concept and

purpose of software engineering tools were also given, namely, the translation of

software engineering artifacts into progressively more specific artifacts.

www.manaraa.com

 19

 CHAPTER III

COLLECTING PROJECT DATA

A. Introduction

Artifacts were collected using software engineering tools from a single semester

graduate-level software engineering course. The course lab structure was based on

industry software development organization and structure. The project followed the

Extreme Programming practice (XP) and a successful electronic commerce web site

named Purchase Tracker was created. Software engineering tools were used to facilitate

the construction of the electronic commerce web site and were also used for collecting

software artifacts [54].

B. Experiment Description

Eighteen graduate students participated in this software engineering project, which

mirrored an industrial software development project. The project’s goal as part of a

graduate-level software engineering course was to create an electronic commerce web-

site named Purchase Tracker. In addition, part of the class formed a separate team whose

role was to collect project artifacts that were being created by the Application Team. The

Application Team followed the Extreme Programming (XP) practice throughout the

project period (100 days) and gave five demos, one each at project day 24, 52, 80, 94,

www.manaraa.com

 20

and 100. The application was successfully completed by satisfying 29 out of the 30 test

cases.

The structure of the two teams is shown in Figure 8:

Fig. 8. Experiment team organization

The customer role provided the team with stories for both the application team

and the measurement team. The main function of the Customer is to clarify requirement

and provide feed back to the project. The Director is the over-all coordinator of

activities. Each team has a Project Lead, charged with carrying out the Developer’s role.

Each of the team members are assigned three stories through mutual agreement.

The developers of the application team focused on the electronic commerce

application and carried out the extreme programming practice with parallel requirement

gathering, design, development, and testing. Fire application demonstrations were

carried out; these were important milestones in moving the artifact magnitudes towards

www.manaraa.com

 21

the final value. The main function of the testers was to author the Test Cases that

validate the Stories. The final test cases were agreed upon by the developers, and the

testers carried out the testing throughout the development process. Two Collectors were

responsible for the task of collecting artifacts. Their roles were specifically created to

assure focus and consistency of the collecting process.

Weekly reports were written and entered into the SSIP (Shared Software

Infrastructure Program) web site. The team members were able to view each other’s

weekly report to enhance communication. The team members were recommended to

spend around 9 hours per week on the project; thus, over 2,340 labor hours were spent

on the Application and the Measurement project.

C. Application Description

The application is a three-tier electronic application with a web-based user interface, an

application server (hosting Java server page code), and a database server.

D. Software Tools Description

Many software tools were used to collect artifact information: RequisitePro was used to

track the requirements; Rational Software Architect (RSA) was used to construct design

phase artifacts; Eclipse was used as the Integrated Software Development platform;

ClearQuest was used to track the issues that were generated by the team during the

development process. In addition, a configuration management system was used to store

artifacts, and operating system shell scripts were used to collect artifacts. The Dynamic

www.manaraa.com

 22

Artifact Tracking Console (DATC) was also used to assist in the collection of artifact

from the tools.

E. Process Description

The quality of crafted software depends strongly on the ability of individual

programmer; this differs from engineering software, wherein predictable applications are

possible with a various range of programmers with different skill sets and experiences.

This is due to the software engineering processes, where each participant is responsible

for one or more software processes. Below is a table, Table 2, of the processes that were

followed for the project experiment:

Table 2. Software Engineering Experiment Team Processes

Measurement
process

1.1 Form the team and assign role

 1.2 Requirement Gathering Process
 Define initial software project measurements for

collection

 1.3 Understand the operation of existing measurement tools
 Understand requirement collection tool operation
 Understand configuration collection tool operation
 Understand problem report collection tool operation
 1.4 Create database for storing measurements
 1.5 While not end of Application Project
 1.5.1 Collect measurements daily
 1.5. 2 Store measurement
 1.5.3 Display measurement
 1.5.4 If project demonstration time
 Demonstrate project
 End If

End while

www.manaraa.com

 23

Table 2. Continued

Application Development
process

 2.1 Form the team and assign role
 2.2 Requirement Gathering Process
 Generate Use Cases
 Talk to project director and
customer
 2.3 While Application is not done
 2.3.1 Design Process
 2.3.2 Implementation Process
 Understand design
 If source file not created
 Create source file in
configuration system
 Check out source file
 Edit source file
 Unit test
 Check in source file
 2.3.3 Testing Process
 If there is a problem
 Do problem report process
 2.3.4 Build Process
 Check out source code
 Build application
 Report build result
 2.3.5 If project demonstration time
 Demonstration project
 End If
 End While

Configuration Management
Process

 3.1 Set up initial software development tools
 Set up requirement management tool
 Set up source code configuration tool
 Set up problem report tool
 3.2 Build Application Project daily

Problem Report Process 4.1 Generate problem report

Problem Resolution Process

 5.1 View Problems
 5.2 Assign priority
 5.3 Assign problem to appropriate role

Consultation Process 6.1 Identify uncertainty and form question

www.manaraa.com

 24

Table 2. Continued

Consultation Process
 6.2 Ask consultant question
 6.3 Listen to answer and resolve uncertainty

Course Administration
Process

 7.1 Enter weekly report at the HUB web site by
Saturday.

 7.2 Attend weekly laboratory coordination
 7.3 Read and respond to cpsc606 emails
 7.4 Contribute to project discussion

F. Software Artifact Source

Software artifacts were collected during the experiment to give the stakeholders a higher

and more abstract level of project situation assessment. We focus on software artifacts

because they are tangible and measurable. The necessary product for this particular

project is binary, Intel Corporation code that moves from hard disk storage to random

access memory, then to processing unit registers and cache memory. This code, in the

processing unit, receives environmental human inputs mediated through the likely path

of a remote client computer transferred through the network protocol stack. The received

signals are processed according to the operators defined by the machine processor;

output signals are then emitted from the processor to the user through a similar path. In

addition to the response to the human user, some of the output signals might be targeted

toward the manipulation of an external environment not directly related to the human

user. Such signals might impart storage and retrieval of information and data.

www.manaraa.com

 25

While the result of the software engineering process is binary code, it takes

software tools to achieve this. In the earliest days of programming, binary code was

directly entered into the computing machine. In those earlier days of software

engineering, when viewing the phases of software life cycle and possible artifacts, most

of the indicators were displayed in unstructured, text form. In the requirement phase, the

developer would formulate the environment and possibly transcribe them in the

laboratory notebook. At the same time, he would start to design the software and also

have the option of writing down any design on the laboratory notebook. The

development and phases would possibly involve detailed step-by-step instruction where

“unit test” is carried out after the actual bits of a register has been loaded into the core

memory. Expectation of the result can be written down in a structured way or might be

kept in the ‘developer’ mind. The artifacts from this earliest stage of software

development is the laboratory notebook. The machine executables were not part of the

artifact because the code were not stored.

The first historic significant tool in the programming paradigm is the assembler.

This is a software tool that translates written human language mnemonics into binary

code. Assembly language is human readable and bridges between the conceptual level of

software engineering to the binary software product. The ensuing development of

software tools takes a higher concept object along this conceptual axis and translates it

down to a more concrete object. We call this the Software Engineering Translation Axis

(SETA). The instantiation of the highest level of abstraction along this axis are human

thoughts, the next lower level, or more concrete level, are natural written and spoken

www.manaraa.com

 26

words, and the levels below that are more structured thoughts that are characterized by

sequence of patterns. Continuing to the specific, the next level SETA objects are

structured, written and spoken words, such as an ‘instructional manual’ or ‘medical

doctor patient oral report protocol’, while the lowest level of SETA are physical binary

code instantiations that control binary gates of a computing machinery processor.

Within the SETA context, we define a SETA object, s, as an object with a

structure property, ‘)(⋅struct ’. The upper limit of the structure property of a SETA

object is human thought; for the purpose of software engineering artifact measurement,

we define a human thought unit as a record of time lapse of three-dimensional electrical

activities, T. It is interesting to note that while we are describing the translation of

abstract and unstructured thoughts down to definitive instructions on a machine

processor, the fact is that these SETA objects, which are at the extreme ends of the axis,

are both instantiated as time lapsed electrical activities. Excruciating amounts of

resources are currently spent on translating between these two sets of electrical patterns,

mostly from the less-structured end to the more-structured end for software engineering

processes. More specifically, this research focuses on a particular type of human thought

- conceptual thoughts that contain patterns. This research does not concern brain firing

patterns, essentially anything within the brain that spurs action outside of it (such as

moving limbs or other body parts); this is because of the causal relationship between the

cause and effect of these thoughts.

For example, this research would model patterns from a pilot’s thoughts during

landing, or something as abstract as a pattern representing a rocket’s launch to Mars. To

www.manaraa.com

 27

point out the expansiveness and immediacy of human thought - a set might include a

stone carver chipping away on a large round stone disk, another could be an English

publication that interprets the carvings on the stone disk. As we have illustrated from

these examples, the present capabilities of computing machineries are certainly not

capable of physically instantiate all high-level SETA objects. We focus on preferred

sequence of patterns because these high-level SETA object can have interesting software

engineering (ISE) consequences; they are transferable to executable code that can run on

state-of-the-art computing machines. We represent these ISE conceptual thoughts as

})(|{ μ>TT oISEo , where mu is a threshold of interestingness that is based on the

present capability of the software engineering processes. That is, ISE objects afford an

opportunity for software engineering processes to translate these patterns down to binary

code (which we represent it by executableo) that controls machine processors to instantiate

the high-level ISE pattern. This has been difficult because of possibility of a wide gap

between the representation capabilities of SETA objects at the ends of the spectrum.

At one end of the axis, patterns that represent different time periods, wide

geographic locations, and range of details can all co-exist at the same time in a mind; at

the other exist computing machines that, at the time of this research, are still not capable

of representing the same patterns as the mind. However, that assertion has not been

calculated. Moreover, it is not the purpose software engineering to duplicate the pattern

of thoughts on computing machineries. The practice of software engineering is to

instantiate high-level SETA objects to machine instructions that has an impact in the

real-world. Taking the earlier landing gear example, it is mischievous to instantiate

www.manaraa.com

 28

computer code that displays pictures of the landing process. It is prudent and correct if

the software engineering process created an embedded landing gear control system that

was represented by the original high-level SETA object. At this point, we simply define

the software engineering processes as activities that translates a human thought SETA

object to a binary SETA object. That is, below is the transformation of a SETA object by

the software engineering processes

executablenbegin oooo →→→→ L1

We define a Software Engineering Tool as a set of translators where each translator can

change the structure of SETA object. Let },,,{ nji oooO L= be a set of SETA objects and

ba OOt a)(be a translator that maps a set of software engineering objects to another set

of software engineering objects; thus, Software Engineering Tools transform one or

more objects into more objects with the main goal of eventually creating the binary

object, UtT = . For example, the traditional sequential software life cycle can be

represented as:

executabletdevelopmen
T

designtesting
TT

trequiremen
T

begin oOOOOo tdevelopmendesigntestingtrequiremen ∧⎯⎯⎯ →⎯∧⎯⎯⎯⎯ →⎯⎯⎯⎯ →⎯ ,

In this sequence, a high-level object is the input for the requirement tool which resulted

in as set of requirements objects. These requirement objects are consumed by testing and

design tools to generate testing and design objects. Developers take testing and design

objects and create development objects, including the goal of the software engineering

process, the executables. We define software artifacts as SETA objects generated by

www.manaraa.com

 29

software engineering tools. Software artifacts are alternatively defined as SETA objects

that have been created using software tools.

We take a closer examination of the relationship between SETA objects, tools,

and the software engineering process by using a simple example. In this example,

researchers want to generate a set of canon angles for accurate placement of projectiles.

In this case, the high-level source object - the beginning of the software engineering

process, includes a pattern of parabolic mathematical equations, images of canons, and

understanding of wind, direction, weather conditions, and other factors that can affect

the flight of trajectory. Another pattern in the beginning set of high-level objects is a

soldier looking up a firing table and sets the canon according to the numbers printed in

the table; they are very simple patterns that are easily understood at a high level. The

other end of SETA spectrum is binary or executable codes that display values in the

firing table. We examine the software engineering process with the following:

executabletdevelopmentrequiremendesign
T

begin ooooO notebook ∧∧∧⎯⎯ →⎯

The original pattern object is on the left-hand side of the graph (above), and the final

executable object at the right-hand side. The software engineering process involves the

utilization of the software engineering tool that is an engineering notebook. In the

notebook the requirement, design, development, and executable are all recorded in an

orderly fashion, and artifacts (design, requirement, development, executable) can be

obtained directly from the software engineering tool. We note that even at this very

simple level, the software engineering tool function as an extended memory and

www.manaraa.com

 30

organizer of the human mind; it is a fact that selection of appropriate software tools can

assure successful execution of software engineering process.

We now look at a more recent example of software engineering project, Web

Services. Once again, the high-level SETA object is fairly straight forward. It contains

some patters of ideas. In this web services case, the pattern would be multi-perspective

but simple nevertheless due to its high-level. The begin object contains patterns of sales

transaction, concept database, and value of information. There might be a storyboard-

like sequence of a client computer automatically asking geo-location server its latest

location; in the process, one pays the server computer a small sum for the information.

The client computer then contacts a highway traffic server for the estimate congestion

spots; it also pays the server a price for the information and, with the information,

figures out the best route to the destination. This high-level SETA object would take

longer to be translated to executables, and software tools and disciplined software

engineering processes certainly would be necessary in this endeavor. We display the

transformation below:

 executabletdevelopmendesigntesting
TTT

trequiremen
T

begin oOOOOo tdevelopmendesigntestingtrequiremen ∧∧∧⎯⎯⎯⎯⎯⎯ →⎯⎯⎯⎯ →⎯ ,,

The above is a description of the Extreme Programming practice, where testing, design,

and development are executed in parallel. We note that in the description above, the

required tools are used in order to generate requirement objects before the testing,

design, and the development process. This order need not be followed strictly, since

high-level requirement object would need to be translated into more structured objects,

www.manaraa.com

 31

in order to move towards the concrete executable along the Software Engineering

Translation Axis.

G. Conclusion

The project is an Extreme Programming (XP) project carried out by a team with some

inexperienced team members. Artifacts were collected to assess the operational activities

of the team. In addition, the project collected data that indicates the generation of

software attribute magnitudes during the project. This practice is ‘developer and result-

centric’, wherein a small number of capable developers have a clear vision of the final

product and are charged to produce a product with a high demonstration rate and low

documentation activity [40]. The functionality of the final product is based on the

personal activities carried out by the software engineers, thus it is paramount that the

team members understand the expectation of the final product. In the Extreme

Programming practice, documentation and testing activities are traded for rapid turn-

around time and frequent Demonstrations. The artifacts exhibit evidence of the Extreme

Programming activities that have been carried out in this software engineering

experiment.

www.manaraa.com

 32

CHAPTER IV

MEASURE AND DATA DESCRIPTION

A. Introduction

Significant progress has been made concerning software engineering processes and

project estimation of cost and size. As processes are broken down to activities,

operational measurement becomes valuable to software team members, developers,

leads, and managers because operation-level activities generate artifacts. Availability of

measurement [55] is analog to a mirror, and can give a person visual feedback for

improvement; this is in contrast to high-level measurements, such as cost. Understanding

operational activities however, require visibility at the activity level [53]; thus, software

tools that store the result of operational level activities (namely artifacts) can be used

additionally as a tool for an operational-level activity assessor.

For example, imagine a software engineer sitting in from of a state-of-the-art

machine displaying an Integrated Development Environment (IDE). How does the

software engineer know the state of the software project, or even the progress of his own

particular part of the project? Similarly, how does the software manager answer the same

question? In the experiment using the Extreme Programming practice, the remedy is to

have a Demonstration as often as possible. However, this only solves part of the

problem, as a Demonstration is only a local illustration of a much larger software

landscape. A chart that spans time can provide higher-level perspective that can benefit

www.manaraa.com

 33

equally higher-level actions such as resource planning [46]. This section gives

prescriptive direction regarding the processing of artifact information collected from

software engineering tools to a standard format called Normal Proportion Artifact Graph

(NPAG). NPAG enables the display of multiple artifacts in a single graph without Unit

Collision or Scaling Problem. From this format, we give a graphing procedures using the

s-curve and liner fitting because these can generate grounded quantitative measurements

and visualizations that serve to improve team members’ understandings of the present

state of the software project. Lastly, we provide a procedure for using the graph

parameter values as an easy-to-use Control Variable for the operation-level, artifact

generation, software engineering processes.

B. Unit Description

The record of collected artifacts is instantiated as a sequence of pairs, where the first

item of the pair is a time-dependent value and the second item is an artifact-dependent

value. For this experiment, the unit of the time-dependent value is ‘day’ and the units of

the artifacts being collected are listed in Table 3:

Table 3. Description of Artifacts’ Units

Artifact Definition Unit Example
Unique
Operator

Unique operators
inside the source
code.

“Unique
Operator”

In this routine there are 3 Unique
Operators: ‘+’, “*”, ‘-“.

Unique
Operand

Unique operands
inside the source
code.

“Unique
Operand”

In this routine there are 2 unique
operands: “count” and
“max_count”.

Operator Number of operators
inside the source

“Operator” There are 5 operators in the
routine: ‘+’, ‘+’, ‘+’, ‘-‘, and

www.manaraa.com

 34

Table 3. Continued

Artifact Definition Unit Example
 code. ‘/’
Operand Number of operands

inside the source
code.

“Operand” There are 4 operands in this
routine: “count”, “count”,
“count”, “max_count”.

Database
Table

Number of database
tables used for the
application

“Table” There are 6 database used in
the application.

Requirement Number of
requirements.

“Requirement
Count”

There are 21 requirements that
have been met in this phase of
the development.

Yes Case Number of test cases
that are classified as
Pass.

“Yes Case” 14 out of 50 test cases were
assigned with a value of
“Pass”

Design
Object

Number of design
objects.

“Design
Artifact”

There are 30 design graphs
created using the tool.

Lines of
Code

Number of lines of
code.

“Lines of
Code”

There are over 20,000 lines of
code in this directory.

File Number of files. “File” There are 192 files in this
directory.

Issue Number of issues
being tracked.

“Issue” After 3 month of development,
the we have over 40 issues in
the issue tracking database.

C. Normal Proportion Artifact Graph (NPAG) Format

Figure 9 contains direct plots of the eleven artifacts collected during the experiment.

Viewing all the artifact data in a single display can provide a larger perspective in

understanding the software engineering operation process. However, Figure 9 is not an

appropriate display, due to unit collision and scaling problem of the vertical axis.

www.manaraa.com

 35

Fig. 9. Raw artifact values displayed in a single graph with unit collision and scaling

problems

Unit collision occurs when attempting to display various units of artifacts on a

single vertical axis, which cause confusion to the viewer of a graph; whereas Scaling

Problem occurs when the simultaneous display of various artifact ranges cause smaller-

range and smaller-sized artifacts to be overwhelmed by larger-range and sized attributes.

We propose the Normal Proportion Artifact Graph (NPAG) format as a standard

visualization format for the display of software engineering artifact data [23, 25]. The

NPAG format focuses on the relationship between the artifact with respect to time,

independent to the absolute magnitude or the unit of the artifact. This idea of using

proportion to compare the quantity of different magnitude is analogous to using rate of

return to represent return on investment. For example, the profits from three software

www.manaraa.com

 36

applications might be $5,000, $10,000, and $50,000 per year (from an absolute

perspective), the profit from these software applications can be presented as 30 %, 60%,

and 2%, respectively. The NPAG format eliminates both unit collision and the scaling

problems with a single justifiable transformation; this is possible by dividing each value

of an artifact’s record data with its maximum value, including the artifact’s Unit:

100
max

⋅=
c
cp i

i

For example, if the maximum value of the artifact Requirement Count artifact is 57

ReqCount and at time 50 its value is 47 ReqCount, we carry out the transformation thus,

82'100
57
47'100

ReqCount 57
ReqCount 47'ReqCount 47 50505050 =⋅⋅== cccc aaa

and map the value of 50c from ‘47 ReqCount’ to 82, which we can use justifiably as a

proportional number 82. The result of the NPAG transformation is a sequence of artifact

values in [0,100] that indicate the proportion of the artifact magnitude to the maximum

artifact value along the project timeline. We point out that this operation is clearly

different than dividing the artifact values by a unit-less number, such an operation would

require justification in both why the particular number was used, and also why the

division operation was carried out. On the other hand, we justify the operation (divide

artifact values by the maximum artifact value) by stating the desire to view all artifacts

in the same graph. The resultant proportion is a grounded experimental value and an

creditable indicator to the percentage the magnitude of the artifact to its maximum value.

www.manaraa.com

 37

When viewed along the horizontal time line, the change of the artifact

magnitudes can indicate the generation behavior of the artifact. We note that this

operation is not an un-grounded transformation of the artifact values by an unjustified

parameter; it is a factual transformation of the artifact values to a scale that enables the

comparison of all artifact records at the same time. Figure 10 is the Normal Proportion

Artifact Graph (NPAG) for this experiment:

Fig. 10. Normalized artifact magnitudes sample 1

In the above graph, the horizontal axis ranges from 0 to 100; this denotes the start

and end time of the project. The vertical axis also spans from 0 to 100, noting the

proportion of the artifact’s magnitude relative to its maximum size. Since the vertical

axis values are derived by dividing the original united value by that of the maximum

united value, the value is a proportion. An example of description of a sequence of

artifact values in a the NPAG format would be “At half-way through the project, the

www.manaraa.com

 38

Requirement (brown colored) artifact has reached close to 70 percent of its maximum

magnitude. The Unit of requirement is Requirement Count.”

The set of experimental data are processed to a standard format for investigation.

The time span of the data is from the beginning of the software project to the completion

of the project. However, it is possible for the time span to be any reasonable segment of

time, which ends with a milestone. For the experimental project, the requirements were

met.

The collected artifact values are composed of a sequence of pairs, where the first

item is a time indicator and the second of the pair is the particular artifact’s magnitude,

)),(,),,(),,((1100 nn atatat L . For example, the loc (line of code) artifact contains a

sequence of pairs with units of day and line of code, and the requirement artifact is a

sequence of pairs with units day and requirement count. The sequence is automatically

created by software tools. During the project, software tools periodically measure the

size of a particular artifact and create a record of that fact and store it with its

corresponding time-related value. The time unit in this particular study is the number of

days that have passed since the start of the project; in future research, units can be: built

number of the project, release of the project, etc. While various progress indicator can

be used for the independent variable axis -- through the normalization process where

each measure is divided by the maximum measurement of the sequence --

last

i
i t

tt ='

www.manaraa.com

 39

the time indicator becomes a unit-less time indicator. The purpose of normalizing the

time indicator is to enable a possible comparison between projects of varying durations.

Through normalization, a project’s time measurement becomes a universal time

indicator in [0,100]; that is, it indicates the percentage of time consumed before the

project stops.

Through the same process of dividing each of the artifacts in the recorded

sequence by the maximum artifact value, we transform the artifact from a particular

value (a numerical number and a unit) to a unit-less representation of proportion. Both

the time axis and the vertical axis become a proportion after the normalization process.

The purpose of the normalization process is to map all artifacts onto the same vertical

axis which indicates the progress of the artifact generation towards the final magnitude

at the end of the time segment. To provide a standard perspective, the vertical axis is

displayed at 2/3 of the length of the horizontal axis.

Fig. 11. Normalized artifact magnitudes sample 2

www.manaraa.com

 40

The Figure 11 NPAG shows Unique Operators, Unique Operands, Operator

Count, Operand Count, Database Table Count, Requirement Count, Test Cases, Design

Object Count, Line of Code, File Count, and Issue Count.

This section gives more specific description of the Normalized Proportion

Artifact Graph (NPAG) format. In this format, the plot illustrates the generation of a

particular, tracked from 0 percent of the final magnitude of 100 percent (the maximum

attribute value during the project period).

As software tools are being used to collects various artifacts in a project, the pair

),(ii at represents the time and artifact value. At the end of the collection period, an

artifact record is a sequence of pairs)),(,),,(),,((1100 nn atatatr L= . Let maxt and maxa be

the maximum value of the sequence. For instance, these values might be ‘23 release’ or

‘9,450 lines of code’. We transform each of the values in the sequence thus

100'
max

⋅=
t
ttt i

ii a and 100'
max

⋅=
a
aaa i

ii a , and we define this sequence of transformed

artifact values as))','(,),','(),','((1100 nnNPAG atatatr L= . A collection of artifact record

in NPAG format is represent as NPAGnrrr },,,{ 21 L . Eleven artifact records were collected

in the experiment that was carried out by the author, as shown in Figure 12 below:

www.manaraa.com

 41

NPAGnrrr },,,{ 21 L

Fig. 12. NPAG data representation and graph

D. S-curve and Straight Line Description

The S-curve is an equation defined as
)exp(1 tgr

Lc
⋅−⋅+

= , where t is the independent

variable, c is the dependent variable, g and r are parameters, and L is a constant. A

possible usage of the equation is to fit a sequence of t and c pairs to derive the g and r

parameters using the log-compression transformation, followed by the linear regression

fitting procedure to derive the readiness and generation parameters. Figure 13

summarizes the steps of the transformation.

www.manaraa.com

 42

Fig. 13. Fitting an s-curve

S-curve can be used to describe adaptation of technology [17] or infection rate of

malware such as a worm [54] with the passage of time, or other adaptation-related

measurements. In our context, we use a s-curve to describe the evolution of a software

artifact.

Two important parameters of an s-curve are those describing readiness and

generation - characteristics of how the artifact was generated by the development team,

Figure 14. A project team generates multiple artifacts; thus, each sequence of artifact

counts result in a pair of s-curve parameters. These can be an indicator of a team’s

artifact generation capability. A project team generates multiple artifacts in a time

period; thus, it is reasonable to characterize a team’s artifact generation capability based

on the team’s artifact generation history, which is based on the ground parameters of the

s-curves,)),(,),,(),,((1100 nn grgrgrfcapability L= . Generally, it is desirable to

generate artifacts as early and as quickly as possible.

www.manaraa.com

 43

Fig. 14. S-curves with various readiness parameter values

The vertical axis indicates the percent of artifact being generated when compared

to the final artifact size. r is the smallest for s-curves at the left of the graph and r value

is large to the right. In other words, smaller r value indicates that the artifacts were being

created earlier in the project. Similarly, we show the equivalent effect of the readiness

parameter when graphing NPAG formatted graph use liner regression fit. Similarly,

when we use a liner graph to describe the experimental data, the descriptive range of the

lines can be characterized by the horizontal axis intercept parameter. Below are the

linear fitted plots with t-intercept values of 0, 10, 30, 50, 70, and 90:

We note that the Churn (pink-colored curve in Figure 15) of s-curve behaves in

an expected diminishing way for ready-to-release software [20].

www.manaraa.com

 44

Fig. 15. S-curve and its diminishing churn

An s-curve is described by
)exp(1 tgr

Lc
⋅−⋅+

= , where t is a time-related

variable and c indicates completion percentage, as measured from the ending artifact

size. The parameters r and g indicate the readiness and generation characteristic of the s-

curve.

1. The Readiness Parameter

The readiness parameter indicates when the software team begins to produce the artifact.

Figure 15 above shows 6 example curves, with readiness values 1, 10, 100, 1000, 10000,

and 100000.

www.manaraa.com

 45

Fig. 16. Linear graph of various intercept parameter values

We note that the lines intercept the horizontal time axis at different locations,

Figure 16. This can be interpreted as the time when the artifact generation has begun.

For example, the pink line indicates that the creation of that artifact begins when at when

10 of the project has been completed, and reached 100 percent of the ending artifact

magnitude at the end of the project time (where the horizontal axis is at 100). On the

other hand, the purple line denotes the beginning of the artifact creation, when 70

percent of the project time has passed and the artifact value is at 10 percent of the final

magnitude of the artifact. This is an important point. We note that liner fitting of a line to

an NPAG formatted graph are not likely to end with the artifact magnitude at 100

percent of the artifact magnitude. This is a disadvantage of using liner fit on the NPAG.

www.manaraa.com

 46

2. The Generation Parameter

The generation parameter indicates how quickly the development team is able to

generate artifacts. The Figure 17 shows lines with generation values of 0.5, 0.2, 0.15,

0.1, 0.05, and 0.02.

Fig. 17. S-curves with various generator parameter values

In this graph we see that all the artifact lines started at time 0 and most finished at

the 100 mark at the end of the project time (except the pink and the blue line). The first

line (brown) show that the artifact magnitude represents a quick rise to its final size at

about 20 percent into the project, while the yellow line grows more slowly and finally

reached the final artifact size close to the end of the project. Thus, the generation

parameter of the s-curve describes the quickness in which the artifact magnitude grow to

reach its project ending size.

www.manaraa.com

 47

In addition to using the s-curve, it is reasonable to use linear regression to

analyze the artifact size. We investigate the representational range of that graph by using

an equivalent of the s-curve generation parameter slope. Figure 18 below shows various

plots with a constant t-intercept parameter value and with various generator values, 10,

5, 2, 1, and 0.2:

Fig. 18. Linear fit with various generator parameter values

We note that all the graph begins at 10 percent of the project time and grows at

various rate. The blue plot indicates the final artifact magnitude, reached at a point close

to 20 percent of the final project magnitude, while the pink plot reached 90 percent of

the final artifact size. For artifact with faster generation, a larger generator value

indicates faster artifact creation.

www.manaraa.com

 48

3. The S-curve Constant

We have described the readiness and the generation parameters of the s-curve,

)exp(1 tgr
Lc

⋅−⋅+
= , and the independent and the dependent variables. Lastly, we

describe the expected maximum value, L. Figure 19 shows plots of s-curve with L values

of 120, 100, 80, 40, 10, and 5.

Fig. 19. S-curve with various expected maximum, L, values

We can see that the effect of the expected maximum value of the s-curve is the end result

of the cycle; its stabilization appoint is at the expected maximum value.

E. Fitting Data Using S-curves and Straight Lines

By analyzing collected artifacts through the s-curve perspective, each fitted artifact

record contains the readiness and generation parameters that describe two important

www.manaraa.com

 49

characteristics of how a software team generates software artifacts (thus towards

successful project completion) during a software project, namely readiness and how

quick. It would be interesting to investigate the relationship between the multiple

readiness parameters amongst the artifacts, for instance. In addition, explaining the facts

of a software project (the collected artifacts) through the s-curve perspective provides a

more systematic and measurable foundation for software artifact tracking, measurement,

and analysis.

Figure 20 displays the expected s-curves for a project following the waterfall

development method.

Fig. 20. S-curves fitted to idealized waterfall artifacts

We note the sequential placement of the S-curves along the timeline represents the

requirement, design, development, and testing artifacts. The readiness and generation

parameters for these idealized phases are listed in Table 4:

www.manaraa.com

 50

Table 4. S-curve Parameter Values for Waterfall Artifacts

 Requirement Design Development Problem
readiness 0.29 9193 1127509 305845
generation 0.079 0.21 0.22 0.12

After putting the artifact data into the NPAG format, we investigate graphical methods

to represent the magnitude changes in the experiment. The first artifact we investigate is

the Lines of Code, shown in Figure 21. The final size is of the project is 7,758 lines,

generated by the 18-member team in 100 days. That amount does not include code from

components that were used to build the system. The NPAG formatted Line of Code

graph is shown with both linear and s-curve fit, while the pink-colored s-curve seems to

better track the Line Of Code magnitude (as compared to a liner fit). We note that the

factual artifact magnitude increases as a step-function, which we assert is partially driven

by project Demonstration milestones. The straight-line liner regression is based on the

minimization the squared of error of the magnitude points. However, the straight line fit

does not account for the final increase of Line of Code phenomena, which is quite

common. However the s-curve seems to fit the data better, with a slow rise at the

beginning and a faster generation following the Lines of Code count.

www.manaraa.com

 51

Fig. 21. NPAG format line of code with s-curve and linear fit

Figure 22 illustrates the characteristic step-function pattern common to File

Count artifacts. It indicates the total number of the files needed to meet the application

requirement. Once again, the pink s-curve seems to reflect the behavior the artifact’s

step-function behavior, while the straight line fit seems to indicate that there is continual

generation of the number of files. From an experienced software engineering point of

view, the s-curve definitely reflects the dynamics of the project activities that resulted in

the step-wise file count record.

www.manaraa.com

 52

Fig. 22. File count with s-curve and linear fitting

Figure 24 is a record of the Issue Count, defined as a record of issues that arise

during the development process; it forms a pattern typical of a team that generate most

of their files as the end of a project nears, indicative of ‘scrambling’ to meet the final

project demonstration milestone. Interestingly, the fitted, pink s-curve did not reach the

100 percent mark at the end of the project period. This seems to indicate that this artifact

was not completed/fully mature at the end of the project; hence, more time was

necessary for the s-curve to reach its project final value. Notable is the fact that the Issue

Count is not a monotonically increasing curve, and the final issue count did drop to 50

percent of the maximum value. With this as a possible cause of the un-completed s-

curve, it did not reach the 100 (maximum) artifact magnitude.

www.manaraa.com

 53

Fig. 23. Issue count with s-curve and linear fitting

Design Object, Figure 24, in this project indicates the number of UML-style (and

any other) artifacts that are design-oriented [27]; an example is a graph of relational

tables that is a common pre-curser to database table implementation. For a team using

UML-styled graphs, Use Cases, Sequence Diagram, Activity Diagram, and Object

Diagram, each is counted individually and added as a Design Object artifact. This two-

step pattern was visible about one-third of the way into the project’s timeline, seeming to

indicate that the team took time to design, and that all design objects were created in a

single session. This could be because the team was on a strict schedule that does not

allow for the designing process to be completed throughout the project; however, this is

a count of the number of Design objects, which is a more detailed investigation into the

design objects that might give further indication of the detailed-dynamics of the design

process. Of note again is the clear superiority of using s-curve to fit a step-function when

compare to the straight line fit.

www.manaraa.com

 54

Fig. 24. Design object count with s-curve and linear fitting

Figure 25 shows the operand count -- programming variables that have been used

in an application -- from the experiment. Variables are used to represent physical world

objects or concepts. They can also be used to represent objects within the software

system. For example, if an array is used to represent a sequence of transactions that have

taken place in a single day. That array is used to represent external reality. A developer

can also use an additional array to organize the details of the past week. In this case we

have two operands: one represents an external item and another is used for internal

organization. The graph shows generation in array magnitude at latter part of the project;

the s-curve is clearly a better representation of this fact than a line derived form a

regression.

www.manaraa.com

 55

Fig. 25. Operand count with s-curve and linear fitting

Figure 26 shows the Operator Count artifact, where operators are used to

manipulate data objects (operands). The number of operators indicate the extent of the

data transformation in an application. However, this research focuses on the behavior of

the operator magnitude by putting it into the standard NPAG format. We note a similar

increase in magnitude towards the end of the project time. When considering the

differences between the estimation and the actual completion as a measurement of fit,

the s-curve fitting is a better fit than straight line when estimating Operator Count.

www.manaraa.com

 56

Fig. 26. File count with s-curve and linear fitting

‘Requirement’ is a higher conceptual object along the SETA (Software

Engineering Transformation Axis), Figure 27. The graph below indicates a continual

generation of the Requirement Count artifact along the time axis, although significant

amount of requirements have been created (over 50 percent) at the project’s half-way

point. We note that the number of requirements continue to grow, in a step-wise

function, as the project progresses. This is a reasonable phenomena, especially

considering that higher concept Requirements need to be clarified during the

development activity and clarification adds more structure and qualification (which

necessarily implies the use of more words).

www.manaraa.com

 57

Fig. 27. Requirement count with s-curve and linear fitting

Figure 28 shows the database-related artifact count, referenced as Table Count.

The experiment project created the database tables about one third of the way into the

project; at this point, there seems to be a couple of incident results in the change of the

number of database tables, but the overall size of them is stable throughout most of the

project. In this artifact, the s-curve traces the step-wise increase of the database table; the

increase and stabilization of the s-curve correspond to the artifact magnitude. Once

again, the linear regression seems to indicate that the team was ready to create the

database tables before the beginning of the project; this is a perfect example linear

limitations – a line has difficulty in summarizing step-wise increments of artifact

magnitude.

www.manaraa.com

 58

Fig. 28. Table count with s-curve and linear fitting

The Cases Passed count, Figure 29, indicates that the tests are not being done at

the beginning of the project, but rather that they are completed at once, late in the

project. This can be justified if the testing is system integration test. However, the end

point of the fitted s-curve fit did not reach the 100 percent mark at the end of the project.

Contrary to the Issue Count artifact, there isn’t a decrease in the Test Case Passed count

to explain the final low ending point; the conclusion drawn form this is “The end point

of the s-curve of the Test Case Passed artifact did not reach the 100 percent mark

indicates either the starting time of Test Case Passed is late, or alternatively, the project

ended too early.” Instead of actually starting date at day 84, Figure 30 shows the ending

of the s-curve reached 100 percent at day 74.

www.manaraa.com

 59

Fig. 29. Test cases passed count with s-curve and linear fitting

Fig. 30. Test cases passed count with hypothetical earlier starting date

The Unique Operands and Unique Operator graphs, Figures 31 and 32, show that

s-curves are good representations of software artifact generation. Specifically, the figure

indicates about 10 percent of the eventual operands were created around one third of

www.manaraa.com

 60

way into the project and new operands are continuously being created throughout the

project. This can be an indicator that the scope of the project is continuously expanding

to cover new requirements, or this can indicate that a project has high complexity and

more operands are being created in order to represent the domain more clearly.

Fig. 31. Unique operands count with s-curve and linear fitting

Fig. 32. Unique operators count with s-curve and linear fitting

www.manaraa.com

 61

F. Compare S-curve Fit to Straight Line Fit

Table 5 compares the estimated values to actual values for both s-curves and a liner fit.

The results (square root of the square the difference between the model and the actual

value) show that the s-curve fits better in 8 out of 11 cases. The deviation value is the

sum of the absolute daily differences between the fitted curve and the actual value.

Table 5. Compare of S-curve and Linear Performance

Measurement S-curve deviation Linear deviation
Requirement Count 2310 1102 X
Design objects 823.2 X 2258
Test Cases 994.2 X 2383
Lines of Code 808.9 X 1328
File Count 1862 1066 X
Issue Count 1262 X 2186
Unique Operator Count 1634 915.8 X
Unique Operand Count 930.1 X 1180
Operator Count 667.4 X 1340
Operand Count 687.7 X 1321
Database Table Count 777.5 X 2371

G. Describing Experiment Data Parameters

The experiment NPAG (Normalized Proportion Artifact Graph) contains 10 artifact

magnitude records and has also been subjected to fitting methods. We propose that,

using this normalized format as a common foundation for the operational control and

also for the visual and analytical investigation of software project artifacts, the result is

like that displayed in Figure 12 on page 41. Two parameters that describe a straight line

fit is the slope and intercept btmc +⋅= , m and t in the equation respectively. The

www.manaraa.com

 62

intercept is where the equation cross the vertical axis. Since our focus in on the behavior

of artifacts along the time dimension of the graph, we focus on the horizontal

interception that is defined as
m
b− where 0=c . We interpret the slope as an indicator of

generation and change to the artifact and the t-intercept as an indicator of the beginning

of the artifact creation. We note that there is not a strong visual correspondence between

NPAG, Fig. 33, and Fig. 34, especially the indication of step-wise increment of the

software artifacts. However, the straight line from the linear regression does give a

factual perspective of the artifacts based on the readiness and the generation parameters.

Fig. 33. Experimental result in NPAG format

www.manaraa.com

 63

Fig. 34. Linear representation of artifact magnitude

In NPAG, the Database table artifact (purple color) and the Unique Operand

(pink color) plots are significantly different from that displayed in Figure 17. The

Database tables have been created at an early stage in the development period, while

Unique Operand grows more slowly, only to explode at the end of the project timeline.

This distinction is not immediately apparent when all artifacts are graphed using straight

lines, as in Figure 34. However, upon closer inspection the straight (purple) Database

Table Count is above the straight (pink) Unique Operand line; this confirms that

Database Table Count artifact does start earlier than the Unique Operand line. This

distinction is apparent by comparing the parameters values in Table 6.

www.manaraa.com

 64

Table 6. Linear Regression Parameters of Experiment Normalized Proportion
Attribute Graph (NPAG)

 Requirements Case Design LOC Files Issues
Readiness 9.121 30.38 2.833 27.58 5.674 28.14
Generation 1.231 0.8459 1.363 0.6019 0.9823 0.9424

 Unique

operators
Unique
operands

Operators Operands Tables

Readiness - 0.6571 23.23 28.47 28.20 - 6.155
generation 1.045 0.8154 0.5932 0.6065 1.234

The s-curves and straight lines are described by parameters of an equation that

quantitatively summarizes the data points being graphed. Each s-curve has readiness and

a generation parameters, and a straight line has slope and a time-intercept parameters.

Below are the experiment artifacts using liner fit and also using s-curve fit; it seems that

s-curves, as shown in Figure 35, give a more realistic graphical representation of when

and how the magnitude change along time than liner fitted lines.

Fig. 35. S-curves of normalized experiment artifacts

The s-curves’ corresponding readiness and generation values are listed in Table 7:

www.manaraa.com

 65

Table 7. S-curve Parameters of Experiment NPAG

 Requirements Case Design LOC Files Issues
readiness 12160 239500 2443 321200 58280 27330
generation 0.1480 0.1350 0.1932 0.1568 0.1692 0.1103

 Unique

operators
Unique
operands

Operators Operands Tables

readiness 988.4 57280 239300 348600 211.9
generation 0.1235 0.1472 0.1494 0.1558 0.1928

We have fitted both s-curves,
)exp(1 tgr

Lc
⋅−⋅+

= , and straight lines, btmc +⋅= , to

NPAG. The results are two graphs and four parameters. The two parameters that

describe the straight line fit are readiness, r, and generation, g, where smaller readiness

indicates earlier start of the artifact building activity and larger generation means faster

creation of artifacts. Similarly, the two parameters that describe the s-curves are also

readiness,
m
b− , and generation, m. We present a sorted data table below and follow

with analysis of the sorted data.

Table 8. Artifacts Sorted According to Graph Parameters

www.manaraa.com

 66

Table 8 lists the eleven sorted artifacts, according to the four graph parameters.

The column labeled ‘l ready’ stands for liner fit readiness parameter. The column labeled

‘l grow’ stands for liner fit generation parameter. The labels ‘S ready’ and ‘S grow’

correspond to s-curve readiness parameter and s-curve generation parameter

respectively. These parameters have been sorted so more desirable values are closer to

the bottom of the table. The general idea of better is: 1) starting early in the project, and

2) creating artifacts quicker.

The first column lists artifacts sorted by linear readiness values. We note that the

Table Count artifact has the best value (-6.155). The third column lists the sorted linear

(fit) generation values with the Design Count as the best artifact with a parameter value

of 1.363. The third fifth column lists sorted artifacts according to the s-curve readiness

values, with Table Count as the best artifact with a value of 211.9. Lastly, in column

seven are artifacts sorted according to the s-curve generation parameter; in this, the

Design artifact count is at the top, with a value of 0.1932. The horizon line through the

table is a 50 percent demarcation that separates the artifacts into a better performing

group from the average performing group. For example, the better group artifacts would

have started earlier in the project and grow at a faster pace.

We have shown in an earlier chapter that the s-curve visually fits better than

linear regression, as in Figure 36 about the Lines of Code artifact.

www.manaraa.com

 67

Fig. 36. Lines of code with linear and s-curve fit

The s-curve (pink-colored) shows the significant generation of the artifacts while

the liner fitted straight line does not show that particular artifact characteristic. We now

look at fitting curves to the artifact data from the parameter value point of view. Table 9

shows artifacts that have been selected using graph parameters as the selection criteria.

We demarcate the field with a 50 percentile line for each of the four parameters in order

to identify artifacts above the 50 percent ranking. We note that (in blue color) the

readiness and the generation parameters of the liner regression are the same set of

artifacts: Tables (Development), Unique Operator (Development), Design (Design),

Source Files (Development), and Requirement (Requirement). The phases of the

software engineering cycle are in parenthesis after the artifact. It is interesting that the

same set is selected by the liner regression parameters. Since the project experiment

follows the Extreme Programming practice, it is reasonable that many of these readiness

artifacts are from the Development phase. The pink-colored artifacts are selected by the

www.manaraa.com

 68

s-curve parameters. We note that only two artifacts are in common, or in agreement, by

the readiness and the generation parameters of the s-curves, Design, and Tables. This

indicates that Design artifacts and Tables were ready at an earlier stage of the

development cycle than other artifacts. These artifacts’ selection by the s-curve

generation parameter indicates that, once the artifacts started to be created by the team,

their magnitude grew rather quickly.

Table 9. Favorable Artifacts Selected According to Common Graph Parameters

Table 10 highlights artifacts selected by the same type of parameters from both

the straight line and the s-curve graphs; that is, one set is selected by the readiness

parameters of the straight line and the s-curve, and the other set has been selected by the

generation parameters of both graphs. Artifacts selected in this table are strong

candidates for that particular type of characteristic (in which artifacts are either created

early, or they are generated quickly). For readiness, both liner and s-curve selection

include Tables (Development), Design (Design), and Requirement (Requirement). This

seems to be reasonable, since Extreme Programming were used during the experiment

www.manaraa.com

 69

and all the Requirement, Design, and Development phases are carried out in parallel. As

for the generation characteristic -- Design (Design), Tables (Development), and Source

Files (Development) -- artifacts were selected to indicate the quick magnitude increase.

Specifically, the database table was developed quickly because electronic commerce

databases have a standard pattern and, once one is familiar with it, they can be created

quickly. The quick generation of the Source File (final count 3,541 files) could be due to

the Component nature of the electronic application. The development team created many

files (706 files, 20 percent of the total count) for the application from scratch; thus, the

quick generation of the Source File count could be due to the downloading of the already

created external component files.

Table 10. Favorable Artifacts Selected According to Common Type of Parameters

Lastly, we investigate the artifacts that are selected based on all four parameters

of the two graphs: Table (Development) and Design (Design). Their selection indicates

that the two have been created at an early time of the project and grew quickly as shown

in Table 11. The necessary number and types of database tables of the Table artifact is

www.manaraa.com

 70

fairly constant for electronic commerce based software product, thus the creation of

database table artifacts is a pattern that can be repeated. As for Design, its selection can

mean that design was done early in the software life cycle, created quickly, and without

significant addition to the Design artifact. For a well known electronic commerce

application using well know web service technology, this is to be expected.

Table 11. Favorable Artifacts Selected According to All Graph Parameters

H. Foundation for Operational Software Process Measurement

This research provides a set of quantitative facts that are derived directly from artifact

values; the latter can be used to construct metrics [16] for software project management

using knowledge-based software tools [50]. These numbers can be predictably

reproduced by fitting both a s-curve and a linear graphs to a standardized formatted

artifact value. In addition, these numbers are without human-mediated adjustment or

organizational-specific calibration, which is an important aspect of characterizing the

www.manaraa.com

 71

numbers as being factual. However, team-specific calibration can be obtained for in-

process operation management. Below, we describe the quantitative values based on the

artifact being collected)),(,),,(),,((1100 nn atatat L . This sequence of values will be put

into the NPAG format so both the range of the time variable and the magnitude variable

are in proportion [0,100]. This format can serve as a standard for the analysis of software

artifacts of similar software projects. The experimental project was 100 days, thus

normalizing the time values would have little consequence to data. However,

normalizing the time values would enable comparison of projects with different time

duration.

For graphic representation, the normalized sequence is plotted on a 100 by 100

grid. This is a clean stage for the simultaneous presentation of all artifact values, as

shown by the Lines of Code Figure 37 here:

Fig. 37. Artifact data plotted in the NPAG format

www.manaraa.com

 72

The four parameters used to describe the s-curve are:
)exp(1 tgr

Lc
⋅−⋅+

= , and the

liner line, btmc +⋅= , can be used as quantitative component for building artifact-

related metrics. For example, the readiness parameters of the two graphs can be

combined as
m
bwrwready −

⋅+⋅= 21 , where ∑= iw1 is the definition of readiness (as a

combination of both the liner and the s-curve readiness parameters). Similarly, the

generation parameters can also be combined as mwgwgrowth ⋅+⋅= 43 , when ∑= iw1 .

These calculations are suggestions for future work and were not reviewed in this paper.

The researchers would like to emphasize that all numbers used are directly derived from

the factual recording from software tools; thus, they are grounded and can be used as

historic factual evidence of the software engineering process that have been carried out

during the project.

I. In Process Software Assessment

We give an operational procedure for the visualization and utilization of graph

parameters [44], which we define as the readiness and generation parameters of the s-

curve. We call these parameters the NPAG parameters, which include two parameters

from the s-curve and two parameters from liner regression. The in-process software

assessment [10] is composed of two steps: Bootstrapping and Assessment. Bootstrapping

gathers the team specific parameters for each artifact and Assessment gives an indication

of whether the team is progressing on target or behind target. First, we describe the

bootstrapping process. Due to the constraint of the s-curve equation,

www.manaraa.com

 73

)exp(1 tgr
Lc

⋅−⋅+
= . Initial artifact estimates are needed. This can be acquired through

estimation such as Line of Code artifact value estimation for object-oriented projects by

Ronchetti [39, 43]. However, due to the wide range of artifacts involved, the author

recommends running a Calibration Project to acquire the initial artifact values. These

artifact values are used as the Expected Maximum in the s-curve equation during the

second Calibration Project. Completion of the second project will generate the first set of

the s-curve parameters: r and g. This completes the bootstrapping step.

After the bootstrapping procedure, we have a set of s-curve parameter values for

each artifact. During a real project, we use the rearranged s-curve equation

))exp(1(tgrcL ⋅−⋅+⋅= for in-process assessment of the generation behavior of the

particular artifact. Specifically, if 100))exp(1(≥⋅−⋅+⋅ tgrc , then the artifact is being

created as expected. On the other hand, if the value is less than 100, then the particular

artifact at that time is being created at a slower pace than expected. The managers can

use that data as a control value [13]. For example, perhaps use a 10 percent envelop

around the expected 100 value. Figure 38 is a more detailed operational procedure:

www.manaraa.com

 74

Fig. 38. Algorithm using NPAG measurement as process control variable

J. Conclusion

A display format called the Normal Proportion Artifact Graph (NPAG) was explained

and used to display experimental software project artifact data. This eliminates the Unit

Collision and Scaling Problem commonly encountered when displaying multi-unit

artifacts in a common space. Two-graph methods were investigated to their display

capability in representing the artifact data. The s-curve was found to be more fitting than

liner fit. This can be due to the step-function nature of software project attributes. The

www.manaraa.com

 75

characteristic of the s-curve was described using the readiness and generation

parameters, and the effect of those parameters on the graph shape was described. The

readiness and the generation values were presented as possible quantitative numbers that

describe the generation of artifact magnitude, which can be used as grounded

quantitative values for the construction of project metrics. A novel process control

procedure was described based on calibrated graph parameters. This procedure gives a

easy-to-understand response for the in-process control of multiple artifact generation

processes.

www.manaraa.com

 76

CHAPTER V

CONCLUSION AND FUTURE WORK

 Eleven artifacts that span the software engineering life cycle were collected from a

software engineering project experiment and analyzed. The number of artifact instances

created by software engineering activities were plotted in a normalized graph format and

fitted using both s-curves and also straight-lines. The artifact values were formatted into

the Normal Proportion Artifact Graph (NPAG) format, which the author believes should

become a standard for displaying multiple type of artifact in a single display without

either Unit Collision nor Scaling Problem. This recommendation is based on the

observation of the step-wise generation pattern of artifact instances; that after identifying

s-curves as a reasonably superior graphical abstractions of the step-wise artifact values.

This research defines and described readiness and generation parameters for the

experimental data collected based on the s-curve model. The parameter values are

grounded in quantitative summarization of software engineering activities, carried out

during the experiment and the operational level of software engineering activity; that is,

focusing on the software engineering processes that generates artifacts.

Based on the proposed NPAG format and the NPAG parameters that characterize

software artifact generation, these ground parameter values can be valuable in modeling

a team’s artifact generation capability. For example, the readiness parameter may

indicate the development team’s process maturity level, as in the ability to generate

artifact as planned. The growth parameter might indicate the experience or a team based

www.manaraa.com

 77

on the assumption that experienced team means quicker generation of artifacts. There are

still interesting questions that should be investigated:

 What is the meaning when a fitted s-curve does not reach the final artifact value?

 What is the meaning when a fitted s-curve starts above the 0 percent mark at time

0?

 What is the effectiveness in using s-curve parameters as process control variable

for operation-level software engineering processes?

These graph fitting techniques help to predict the timing and amount of resources used

throughout an Extreme Programming project. Since significant software resources are

devoted to the maintenance phase of the software life cycle [30, 31, 32], it is informative

to investigate the effectiveness in the application of s-curve control variable to manage

the maintenance phase of the software life cycle.

The experiment used to collect data was conducted over a 100-day period. Future

research should address projects of different lengths. As Putnam has observed on

software sizing, combination of sizing patterns are, in themselves, a larger version of the

pattern [38] (in this case, Raleigh Curves). It would also be interesting to investigate the

applicability of the s-curve fitting to a combination of software projects.

www.manaraa.com

 78

REFERENCES

[1] V. R. Basili, R. W. Selby, and D. H. Hutchens, "Experimentation in software

engineering," IEEE Trans. on Soft. Eng., vol. 12, pp. 733 – 743, 1986.

[2] P. Béquin and Y. Clot, "Situated action in the development activity," Activities,

vol. 1, pp. 50 - 63, 2004.

[3] K. Beck, M. Beedle, A. van Bennekum, A. Cockburn, W. Cunningham, M.

Fowler, J. Grenning, J. Highsmith, A. Hunt, R. Jeffries, J. Kern, B. Marick, R. C.

Martin, S. Mellor, K. Schwaber, J. Sutherland, and D. Thomas, "Manifesto for

agile software development," http://agilemanifesto.org, 2001.

[4] D. J. Berndt, J. L. Jones, and D. Finch, "Milestone markets: software cost

estimation through market trading," Proc. 39th Ann. Hawaii Int. Conf. Sys. Sci.,

vol. 9, pp. 230 - 237, 2006.

[5] B. Boehm, B. Clark, E. Horowitz, C. Westland, R. Madachy, and R. Selby, "Cost

models for future software life cycle processes: COCOMO 2.0," Ann. of Soft.

Eng.. vol. 1, pp. 57 – 94, 2005.

[6] B. Boehm and R. Turner, "Management challenges to implementing agile

processes in traditional development organizations," IEEE Soft.. vol. 22, p. 10,

2005.

[7] B. W. Boehm, B. Steece, and R. Madachy, Software Cost Estimation with

Cocomo II. Englewood Cliffs, New Jersey, Prentice Hall PTR, 2000.

[8] B.W. Boehm and K. J. Sullivan, "Software economics: a roadmap," Proc. Conf.

Future of Soft. Eng., pp. 319 - 343, 2000.

www.manaraa.com

 79

[9] E. Chang and T. S. Dillon, "A usability-evaluation metric based on a soft-

computing approach," IEEE Trans. on Sys., Man, and Cyber., vol. 36, pp. 356 -

372, 2006.

[10] R. L. Chen, "Computerized life cycle advising, monitoring, and predicting

(CLAMP),", Ph.D., Texas A&M University, College Station, 1985.

[11] B. H. C. Cheng and J. M. Atlee, "Research directions in requirements

engineering," 2007 Future of Soft. Eng. FOSE ’07, pp. 285 – 303, 2007.

[12] Clayton M. Christensen, "Exploring the limits of the technology s-curve. Part1:

Component technologies," Prod. and Op. Manag.. vol. 1, pp. 334 – 357, 1992.

[13] P. Donzelli, “Decision support system for software project management,” vol.

23, pp. 67 – 75, July 2006.

[14] M. R. Endsley and D. J. Garland, Situation Awareness Analysis and

Measurement, Mahwah, New Jersey: Lawrence Erlbaum Associates, 2000.

[15] R. Fantina, Practical Software Process Improvement. Boston: Artech House,

2005.

[16] N. Fenton, “Software measurement: A necessary scientific basis,” IEEE Trans.

on Soft. Eng., vol. 20, pp. 199 – 206, 1994.

[17] R. Foster, Innovation: The Attacker’s Advantage, New York: Summit Books,

1986.

[18] Martin Fowler, UML distilled, third edition: a brief guide to the standard object

modeling language, New York: Addison-Wesley, p. 68, 2004.

www.manaraa.com

 80

[19] P. F. Gehring and U. W. Pooch, “Software development management”, Data

Manag., vol. 1, pp. 14 – 18, 1977.

[20] G. A. Hall and J. C. Munson, “Software evolution: Code delta and code churn”,

Jour. of Sys. and Soft., vol. 54, no. 2, pp. 111 – 118, 2000.

[21] IEEE, IEEE software engineering collection on cd-rom, IEEE Software

Engineering Standard, IEEE, 2006.

[22] IEEE, IEEE standard glossary of software engineering Terminology, IEEE

Standard, IEEE, 1990.

[23] ISO, "ISO/IEC 25000:2005 software product quality requirements." vol. 2006,

ISO, Ed.: ISO, 2005.

[24] A. Issa, M. Odeh, and D. Coward, "Software cost estimation using use-case

models: A critical evaluation," Info. and Comm. Techn., 2006. ICTTA '06 2nd,

pp. 2766 – 2771, 2006.

[25] E. Johansson and M. Host, "Software architectures: Tracking degradation in

software product lines through measurement of design rule violations," Conf.

Soft. Eng. Know. Eng. SEKE '02, 14th International, Ischia, Italy, pp. 249 – 254,

2002.

[26] M. Jorgensen and K. Molokken-Ostvold, "Reasons for software effort estimation

error: Impact of respondent role, information collection approach, and data

analysis method," IEEE Trans. on Soft. Eng., vol. 30, pp. 993 - 1007, 2004.

[27] M. Jorgensen and M. Sheppart, "A systematic review of software development

cost estimation studies," IEEE Trans. on Soft. Eng., vol. 33, pp. 33 - 53, 2007.

www.manaraa.com

 81

[28] B. Kitchenham, S. L. Pfleeger, and N. Fenton, "Towards a framework for

software measurement validation," IEEE Trans. on Soft. Eng., vol. 21, pp. 929 –

944, 1995.

[29] C. P. Lecht, The management of computer programming projects, New York:

American Management Association, Inc. 1967.

[30] M. M. Lehman, "Approach to a theory of software evolution," Eighth Intern.

Workshop on Prin. of Soft. Evol., pp. 135, September 2005.

[31] M. M. Lehman, "Programs, life cycles, and laws of software evolution,"

Proceedings of the IEEE, vol. 68, pp. 1060 – 1076, 1980.

[32] M. M. Lehman and J. F. Ramil, “Towards a theory of software evolution – and

its practical impact,” Proc. of 2000 Inter. Symp. Prin. Soft. Evol., vol. 1, pp. 2 –

11, November 2000.

[33] N. K. Ma and H. Fan, "Split team development project (A)," Case Study, Texas

A&M University, Department of Computer Science, College Station, Texas,

2004.

[34] Z. Mihajlovic and D. Velasevic, "Tracking software projects with the integrated

version control in SMIT," ACM SIGSOFT Soft. Eng. Notes. vol. 26, pp. 38 – 43,

2001.

[35] R. Miles and K. Hamilton, Learning UML 2.0, Sebastopol, California: O’Reilly,

April 2006.

www.manaraa.com

 82

[36] Object Management Group, UML infrastructure specification, v2.1.1,

formal/2007-02-04, Needham, Massachusetts, Object Management Group,

February 2007.

[37] M. C. Paulk, "Extreme programming from a CMM perspective," IEEE Soft., vol.

18, pp. 19 – 26, 2001.

[38] L. H. Putnam, "A general empirical solution to the macro software sizing and

estimating problem," IEEE Trans. on Soft. Eng., vol. SE-4, pp. 345 – 361, 1978.

[39] M. Ronchetti, G. Succi, W. Pedrycz, and B. Russo, "Early estimation of software

size in object-oriented environments a case study in a CMM level 3 software

firm," Info. Sci., vol. 236, pp. 475 – 489, 2006.

[40] B. E. Scott, "Survey of computer program documentation practices at seven

federal government agencies," Comp. Tech. Incorp., Arlington, Virginia, Report,

March 1967.

[41] R. L. Shaw, Fighter Combat, Tactics and Maneuvering. Annapolis, Maryland:

Naval Institute Press, 1985.

[42] D. B. Simmons, "Measuring and tracking distributed software development

projects," Proc. Ninth IEEE Works. Future Trends of Dist. Comp. Sys., pp. 63 -

69, May 2003.

[43] D. B. Simmons, "Art of writing large programs, The," IEEE Comp., vol. 5, p. 7,

1972.

www.manaraa.com

 83

[44] D. B. Simmons, N. C. Ellis, H. Fujihara, and W. Kuo, Software Measurement, A

Visualization Toolkit for Project Control and Process Improvement. Englewood

Cliffs, New Jersey: Prentice Hall PTR, 1998.

[45] D. B. Simmons and N. K. Ma, "Software engineering expert system for global

development," IEEE Inter. Conf. on Tools with Artif. Intel. Washington, D. C.:

IEEE, 2006.

[46] D. B. Simmons and C.-S. Wu, "Plan tracking knowledge base," Twenty-Fourth

Ann. Int. Comp. Soft. Appl. Conf. Taipei, Taiwan, 2000.

[47] E. Stensrud and I. Myrtveit, "Identifying high performance ERP projects," IEEE

Trans. on Soft. Eng., vol. 29, pp. 398 - 416, 2003.

[48] K. Thackrey and J. Wright, "Experience tracking software development progress

on a large Ada project (a window into the development process)," Conf. TRI-Ada

'91: Today's Accomplishments; Tomorrows Expectations, San Jose, California,

1991, pp. 418 - 424.

[49] L. Voinea and A. Telea, "Multiscale and multivariate visualizations of software

evolution," Proceedings of the 2006 ACM symp. Soft. Visual. SoftVis ‘06, pp. 115

- 124, 2006.

[50] N. Weaver, I. Hamadeh, G. Kesidis, and V. Paxson, "Preliminary results using

scale-down to explore worm dynamice," Proceedings of the 2004 ACM Works.

WORM ‘04, pp. 65 - 72, 2004.

www.manaraa.com

 84

[51] L. Voinea and A. Telea, "Visualization: an open framework for CVS repository

querying, analysis and visualization," Proc. 2006 Int. Work. on Mining Soft.

Repo. MSR ‘06, pp. 33 - 39, 2006.

[52] C.-S. Wu and D. B. Simmons, "Software project planning associate (SPPA): a

knowledge-based approach for dynamic software project planning and tracking,"

Comp. Soft. App. Conf., COMPSAC 2000, The 24th Annual International, Taipei,

Taiwan, p. 6, October 25 - 27, 2000.

[53] S. Yun and D. B. Simmons, "Continuous productivity assessment and effort

prediction based on Bayesian analysis," Twenty-Eighth Ann. Int. Comp. Soft.

App. Conf. Hong Kong, 2004.

[54] J. Zhang, D. Zage, and W. Zage, "Improving project planning/tracking for

student software engineering projects through SOPPTS," Proceedings 16th

Conference on Soft. Eng. Edu. Train., 2003 (CSEE&T 2003), Madrid, Spain,

2003.

[55] S. Zhang and Y. Wang, "An extension of SEMEST: The online software

engineering measurement tool," CCECE 2004 - CCGEI 2004 Niagara Falls, New

York, 2004.

[56] J. Zheng, L. Williams, N. Nagappan, W. Snipes, J. P. Hudepohl, and M. A.

Vouk, "On the value of static analysis for fault detection in software," IEEE

Trans. on Soft. Eng., vol. 32, p. 14, 2006.

www.manaraa.com

 85

APPENDIX A

GLOSSARY OF TERMINOLOGY

A. Introduction

In this section, terms are defined. Each is listed entirely in capital letters, then followed

by a corresponding definition. All terms are used in the context of software engineering

and of software project; contextual support of many terms can be invoked by either

precede or follow the term with the words ‘software project’. The reading of the

definition of a term proceed as “The definition of a <the specific term> is,” followed by

the definition of the term. Additional definitions can be found in:

1. IEEE (Institute of Electrical and Electronics Engineers) Standard Glossary of

Software Engineering Terminology, IEEE Std 610.12-1990.

2. Unified Modeling Language (UML) v2.1.1.

3. PAMPA Knowledge Base

All terms used in this dissertation intent to be consistent with these sources. However,

the main purpose of this Glossary is to function as a supporting resource for this

dissertation; thus, definitions herein can be different than a term’s generally definition.

Terms that are unchanged from the Standard Glossary are indicated with a star (*)

symbol.

Due to the counting nature of this research, it is necessary to take additional time

to distinguish between an abstraction and an instance. We define the description of items

www.manaraa.com

 86

as CLASS and the actual item as INSTANCE. For example, the class

SOFTWARE_ENGINEER describes software engineers in general, while an instance of

that class named ‘Johnny Rocket’ is a specific software engineer. Each class has an

attribute that indicates the number of class instances in existence. The manifestation of a

class needs not be physical. For example, one’s thinking to use ‘Agile software life

cycle’ is an acceptable instance of the ‘Software Project Process Ideas’ class.

B. Glossary

ABSTRACTION LEVEL. An attribute of a software instance that contains a value

indicating the closeness of a software instance to machine code. Machine code has

the lowest abstraction value.

ABSTRACT CLASS. A class that cannot be instantiated.

ACTIVITY. A PAMPA class that is composed of an initial milestone and a final

milestone.

AGGREGATION. see aggregation ordinary.

AGGREGATION COMPOSITE. of class. A whole/part relationship. “a strong form of

aggregation that requires a part instance be included in at most one composite at a

time. If a composite is deleted, all of its parts are normally deleted with it. Note that

a part can (where allowed) be removed from a composite before the composite is

deleted, and thus not be deleted as part of the composite.” An example is shown

below:

www.manaraa.com

 87

AGGREGATION ORDINARY. An example of an aggregation where the Testing Team

class owns Software Engineers is diagrammatically shown below using the UML

syntax

ARTIFACT. A PAMPA knowledge base class. An artifact is any object that is created

and maintained by software tools. This research expands the definition of artifacts

from objects maintained by direct software tools to include objects maintained by

in-direct software tools. For example, a project plan is an artifact created by a

project management software tool, issues, and problem reports are artifacts; design

objects are also artifacts.

ATTRIBUTE. A characteristic of an object; for example, the object’s color, size, or

type. Some characteristics can be measurable, countable, or comparable.

CANONICAL ATTRIBUTE PROJECT SET (CAPS). CAPS is a set of software project

attributes that can be used for retrospective project review to improve software

processes or for team capability assessment.

www.manaraa.com

 88

CLASS. of unified modeling language infrastructure [36]. An element of the M2 layer of

the Four-layer Metamodel Hierarchy where UML is defined. Instantiation of class

from the M2 layer to the user model M1 layer results in a representation of a set of

possible real-world elements.

CLASS ABSTRACT. See abstract class.

COMPLETION. A milestone.

COMPOSITION. class. A class that include other classes. Instance of the included class

has only a single object as its owner. When the owner object is deleted, the instance

is also deleted.

CRITERIA. A question that can result in a ‘Yes’ or a ‘No’ answer.

DEFECT. An set of incorrect instructions in the source code.

DEMONSTRATION. Running of executables of an in-progress software project for

informative purpose.

EXECUTABLE. see object code.

FOUR-LAYER METAMODEL HIERARCHY. see UML. FOUR-LAYER

METAMODEL HIERARCHY.

GENERATION. A graph parameter that indicates the growth rate of the dependent

variable. For example, the graph below contains six plots with different generation

parameter values. The different rate at which the vertical value increases is due to

the different generation parameter values.

www.manaraa.com

 89

GROUNDED INSTANCE. An element of the M0 layer of Four-Layer Metamodel

Hierarchy.

INSTANCE. of a class. An occurrence of a class. Each instance has the following

attribute: instance name.

INSTANCE COUNT. CLASS. An attribute of a model that contains the number of

instances in the M0 Four-Layer Metamodel Hierarchy.

ISSUE. Deviation from requirement or generally accepted behavior that causes material

operation inefficiency. Issues usually occur during software operation or testing. In

this particular experiment, software process-related issues are also recorded as

issues.

METAMODEL (*) [36]. M2 layer of the Four-Layer Metamodel Hierarchy. For

example, the Unified Modeling Language (UML) is a metamodel.

MODEL. equation. A mathematical equation that maps values from one set of values to

another set of values.

www.manaraa.com

 90

MODEL [36]. graphic user. Define languages that describe semantic domains, i.e., to

allow users to represent a wide variety of problem domains.

NPAG (Normalized Proportion Artifact Graph). A display of artifact records, wherein

both the time axis and the vertical axis are measured from 0 through 100.

OBJECT CODE. A software instance in a format that can be recognized by a computing

machine. A software instance of the lowest abstraction value.

PAMPA. An acronym for Project Attribute Monitoring and Prediction Associate. A

computing system that monitors and predicts software project attributes. It is

composed of a knowledge base and an expert system.

PAMPA KNOWLEDGE BASE. A UML-based user model of software project that is

composed of 35 classes that define the Plan, Supplier, Organization, Software

Product, and Customer areas of a software project and their relationships.

PARAMETERS. Fixed value in a mapping function between two set of numbers.

PROCESS. A PAMPA class that is composed of activities. (1) A sequence of steps

performed for a given purpose; for example, the software development process. (2)

An executable unit managed by an operating system scheduler. See also: task; job.

(3) To perform operations on data.

READINESS. A graph parameter that indicates the starting point of significant

dependent variable growth.

REQUIREMENT*. (1) A condition or capability needed by a user to solve a problem or

achieve an objective. (2) A condition or capability that must be met or possessed by

a system or system component to satisfy a contract, standard, specification, or other

www.manaraa.com

 91

formally imposed documents. (3) A documented representation of a condition or

capability, as in (1) or (2). See also: design requirement; functional requirement;

implementation requirement; interface requirement; performance requirement;

physical requirement.

S-Curve. An equation that maps an independent variable that represents time to a

dependent variable. The equation embodies the description of 3 stages: slow initial

growth of dependent variable, followed by rapid growth, and finally by slow

growth. An s-curve equation is defined as
)exp(1 tgr

Lc
⋅−⋅+

= , where t is the

independent variable and c is the dependent variable, g and r are parameters, and L

is a constant. A possible usage of the equation is to fit a sequence of t and c pairs to

derive the g and r parameters using linear regression fitting process. An S-curve can

be used to describe adaptation of technology with the pass of time. In our context,

we use an s-curve to describe the evolution of a software artifact.

SOFTWARE ENGINEERING TOOL. see Software Tool.

SOFTWARE LIFE CYCLE. The period of time that begins when a software product is

conceived and ends when the software is no longer available for use. The software

life cycle typically includes a concept phase, requirements phase, design phase,

implementation phase, test phase, installation and checkout phase, operation and

maintenance phase, and, sometimes, retirement phase. Note: These phases may

overlap or be performed iteratively.

www.manaraa.com

 92

SOFTWARE PROJECT. A set of classes and relationships defined by PAMPA (Project

Attribute Monitoring and Prediction Associate).

STORY. A text description that conveys the software requirement from the users’ point

of view. Each story is stated in such wording so it can be validated. Story is a

requirement document that is used in the Extreme Programming software

development process.

UML. Unified Modeling Language. a visual modeling language for specifying,

constructing, and documenting the artifacts of systems. It is a general-purpose

modeling language that can be used with all object and component methods, and

that can be applied to all application domains (e.g., health, finance, telecom,

aerospace) and implementation platforms (e.g., J2EE, .NET).

http://www.omg.org/docs/formal/07-02-04.pdf

UML. FOUR-LAYER METAMODEL HIERARCHY. An Object Management Group

(OMG) description of graphical modeling language. The detailed description is in

reference [36]. The four layers are named M3/meta-metamodel, M2/metamodel,

M1/model, M0/run-time instance. The Unified Modeling Language (UML) is an M2

layer element, software architect and software designers instantiates UML to create

models in the M1 layer, and M0 layer contains run-time instances of M1 model.

Below is an example of the Four-level Metamodel Hierarchy [36]:

www.manaraa.com

 93

UNIT. MEASUREMENT. A set quantity of an instance attribute that has a name and is

generally known. The set quantity is used to describe the attribute. Defined in the

context of four items: 1) an instance, 2) an attribute, 3) a quantity with respect to the

attribute, and 4) a name. Example 1, after measuring the diagonal length of a laptop

screen, one writes down 23. To answer the question ‘What is the unit of 23?’, one

states “The instance being measured is a laptop screen, the attribute being measured

is length, the quantity is 23, and the name of the unit is ‘inches’”. Example 2, after

counting stars in the sky, one writes down 230. To answer the question ‘What is the

unit of 230?’, one states “No instance is being measured, instances are being

counted. No attribute is being measured. The quantity is 230, and the name of the

unit is ‘count’”. Example 3, after learning that the Darkness of a Night can be

defined by the number of viewable stars, one counted the number of stars in a sky

and wrote down 230. To answer the question ‘What is the unit of 230?’, one states

“The instance being measured is the sky, the attribute being measured is ‘Darkness

www.manaraa.com

 94

of a Night’, the quantity is 230, and the name of the unit is ‘star’” We note that

while quantity and the physical act of counting for example 2 and example 3 are the

same. The question “What is the unit of 230?” warrants different answers because of

difference in context.

www.manaraa.com

 95

APPENDIX B

RECORDED ARTIFACTS

Below is the set of artifact data retrieved from a successful software project. The

project produced a successfully electronic commerce web site named Purchase

Tracker. This table only gives the final magnitude of each of the artifact. The

complete record includes the sequence of the artifact magnitude collect during each

day of the project.

Measurement Lifecycle Tool Type of Tool Final Size

Requirement
Count

Requirement Rational
RequisitPro

Requirement tool 74 Tasks

Design objects Design Rational
Software
Architect

Design 7 Use cases,
6 Interaction
Diagram,
1 Database
Diagram.

Test Cases Test Excel Testing 30 Test Cases,
29 Completed
Test Cases.

Lines of Code Development Subversion Configuration
management tool

7758 Lines of
Code

File Count Development,
Maintenance

Subversion Configuration
management tool

3541 Files

Issue Count Development,
Maintenance

ClearQuest Issue Tracking
Tool

27 Closed
Issues,
38 Ending
Issues.

Unique Operator
Count

Development,
Maintenance

Subversion Configuration
management tool

23 Unique
Operators

Unique Operand
Count

Development,
Maintenance

subversion Configuration
management tool

1158 Unique
Operands

Operator Count Development,
Maintenance

subversion Configuration
management tool

3940 Operators

Operand Count Development,
Maintenance

subversion Configuration
management tool

6622 Operands

Database Table
Count

Development,
Maintenance

 6 Database
Tables.

www.manaraa.com

 96

APPENDIX C

EXPERIMENT APPLICATION USER MANUAL

Below is part of the User Manual from the Application Project of the experiment. The

application team carried through the extreme programming practice and developed a full

function electronic commerce web application that manages a store’s inventory. The

system’s name is Purchase Tracker.

www.manaraa.com

 97

www.manaraa.com

 98

www.manaraa.com

 99

www.manaraa.com

 100

www.manaraa.com

 101

www.manaraa.com

 102

www.manaraa.com

 103

www.manaraa.com

 104

APPENDIX D

DATA FITTING SAMPLE

Below is a sample of the artifact values collected during the experiment.

www.manaraa.com

 105

VITA

Name

 Norman K. Ma

Education

2007, Ph.D. in Computer Science, Texas A&M University at College Station,
Texas

2000, M.B.A., Southern Methodist University, Dallas, Texas
1990, M.S. in Computer Science, University of Tennessee at Knoxville, Tennessee
1986, B.S. in Computer Science, University of Illinois at Urbana-Champaign,

Illinois

Professional Experience

2007, System Engineer, The MITRE, Bedford, Massachusetts
2003, Teaching Assistant, Texas A&M University at College Station, Texas
2002, Software Engineer, IntelliSoft Corporation, Plano, Texas
1995, Software Engineer, Raytheon Systems Company, McKinney, Texas
1992, Software Engineer, Lockheed-Martin, Glendale, California
1986, Software Engineer, Texas Instruments, Johnson City, Tennessee

Contact

Norman K. Ma
101 Great Rd #108
Bedford, MA 01730

Department of Computer Science
Texas A&M University
TAMU 3112
College Station, TX 77843-3112

www.web2076.net

